SEARCHING LOST PEOPLE WITH UAVs: SYSTEM & RESULTS OF THE CLOSE-SEARCH PROJECT

P. Molina, I. Colomina	Institute of Geomatics	Castelldefels	ES
T. Vitoria	Asociación Industria Navarra	Pamplona	ES
P. F. Silva	DEIMOS Engenharia	Lisbon	PT
J. Skaloud	École Pol. Fédéral de Lausanne	Lausanne	СН
W. Kornus	Institut Cartogràfic de Catalunya	Barcelona	ES
R. Prades	Direcció General Protecció Civil	Barcelona	ES
C. Aguilera	European GNSS Agency	Brussels	EU

XXII ISPRS Congress, Melbourne – 2012-08-29

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°248137

AGENDA

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

THE PROJECT

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

SUMMER '94: A TRAGEDY & A 15 YEARS DREAM

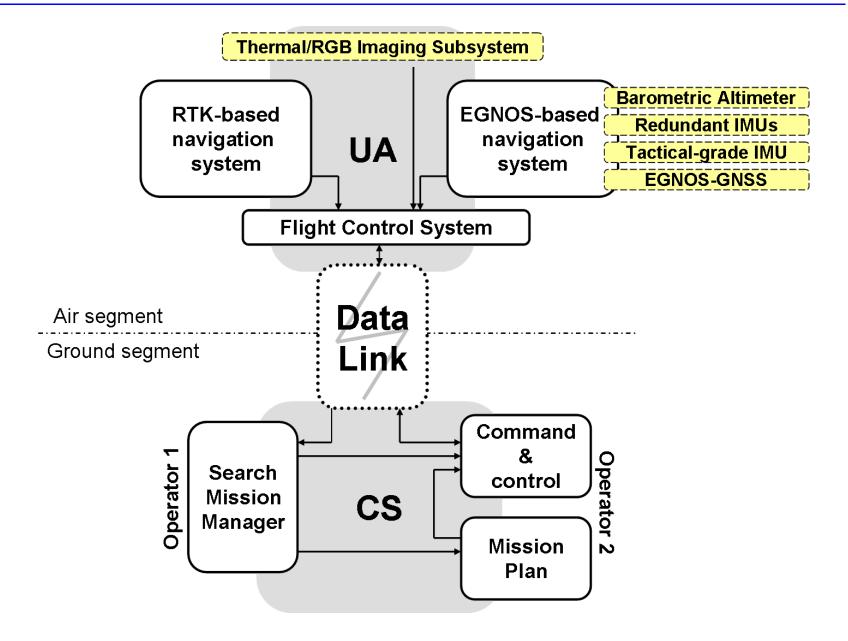
CHARACTERISTICS OF SEARCH-AND-RESCUE MISSIONS

Item	Description	Requirements for aerial search	
Target	Lost mountaineers, mushroom	Lives in danger	
	collectors, disaster survivors	→ High priority	
		→ Segregated airspace	
Scenario	Remote, wild areas,	SAR teams in danger	
	day & night,	→ unmanned	
	 bad weather conditions 	→ thermal/RGB vision	
		→ safe navigation	
Procedure	Fast deployment, segregated	Rapid, effective response	
	areas	→ low weight & size	
	 1st phase: person is alive, searching paths, rivers 	→ no setup dependency	
	• 2nd phase: person might not be alive, full area scan		

UAVS FOR DULL, DIRTY & DANGEROUS MISSIONS

THE PROTOTYPE

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work



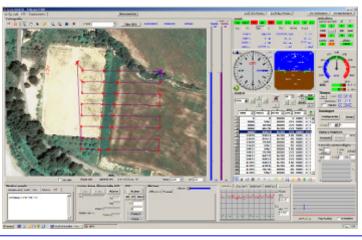
THE CLOSE-SEARCH PROTOTYPE: ARCHITECTURE

THE UNMANNED HELICOPTER

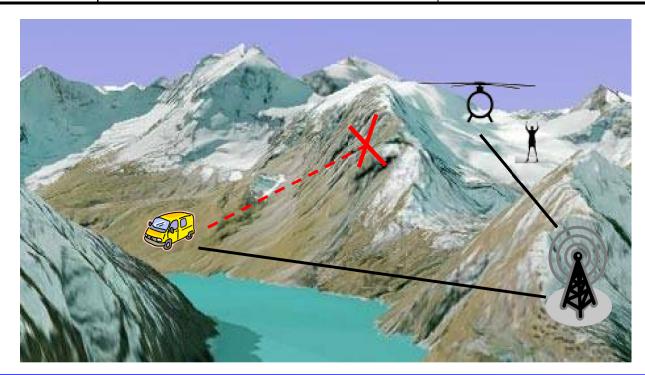
Fuselage	
Structural Material:	rectangular section aluminum frame
Total length:	3.9 m.
Length (w/o blades):	2.9 m.
Height:	1.3 m.
Width:	0.9 m.
Rotor diameter:	3.2 m.
Empty weight:	40 kg.
MTOW	
Structure:	75 kg
Power rating:	18 hp (13.42 kw)
Type:	1 engine, 1 cylinder, 2 stroke air- cooled,
	electric starter, gasoline (10l)
Performance	
Max speed tested -cruise speed:	50 km/h – 35 km/h
Endurance (10 l. fuel):	90'
Service ceiling tested:	ASL 1100 m
Wind speeds tested:	up to 40 km/h
Range	4 km (actual comm system)

The UAR-35 is an in-house development by the Asociación de la Industria Navarra (AIN)

THE GROUND CONTROL STATION


The Ground Control Station (GCS) is also an in-house developement by AIN, mounted on a 4WD van, to perform:

- [Off-line and/or on-site] mission planning,
- Modifications of the mission plan on-the-go, if needed,
- Telemetry and on-board imaging monitoring



LOS-&-BLOS COMMUNICATION: A SAR REQUIREMENT

Communication in CLOSE-SEARCH				
Architecture	Line-of-sight	Beyond-Line-of-sight		
Technology	WiFi	WiMAX		
Range	(tested up to) 4 km	> 50 km		
Bit-rate	< 54 Mbit / s	30 – 40 Mbit / s		
Obstacle dependency	Yes	Yes/No (tower locations)		

THERMAL & OPTICAL IMAGING: SEEING IN THE COLD DARK

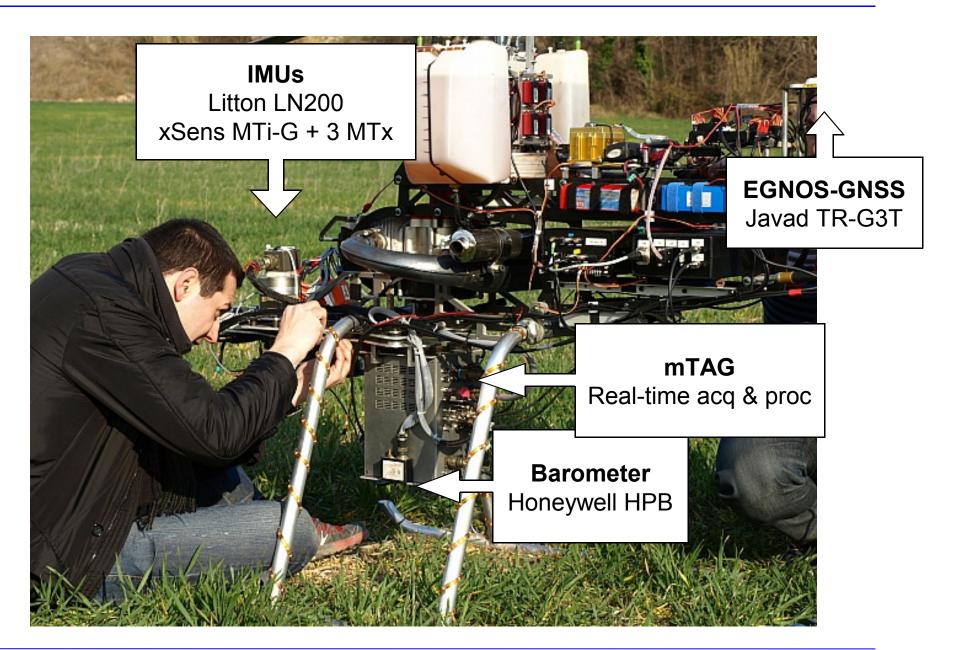
Why thermal and optical sensors?

- -Cold nights are common SAR scenarios:
 - Specially dangerous for humans
 - Manned platforms do not usually operate at night
- -RGB complements thermal vision:
 - Discard false alerts
 - Clothes, etc... might be useful hints

Thermal camera

→ Raytheon 2000B, 320 x 240 pixels

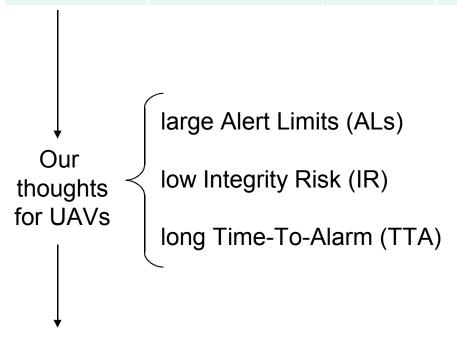
→ Sony CM-3120CDM, 582 x 500 pixels



EGNOS-BASED REDUNDANT NAVIGATION: FLYING SAFELY

SAFE NAVIGATION

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

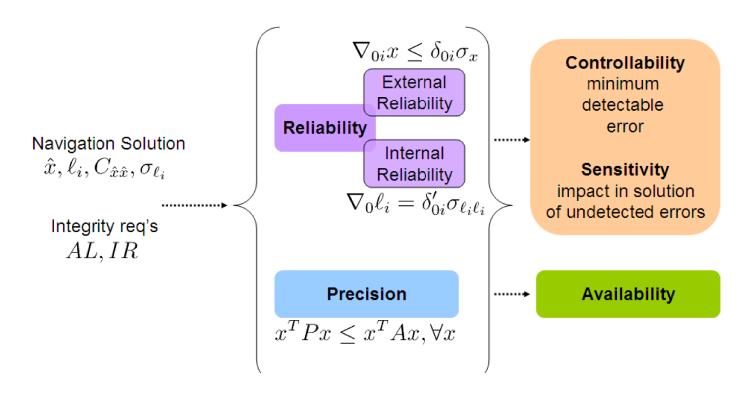


INTEGRITY: FROM CIVIL AVIATION TO UAV MISSIONS

Approach	HAL, VAL (m)	TTA (s)	IR (-/s)	
APVI	40, 50	10	10 ⁻⁷ /150	EGNOS certification (2010)
CATI	40, 10-15	6	10 ⁻⁷ /150	

Approach	HAL,VAL (m)	TTA (s)	IR (-/s)
W2W	4, 7.5	<<10	1 · 10-6/150
GA/S	2.5, 4	<<10	1 · 10-6/150

Molina et al., "INTEGRITY ASPECTS OF HYBRID EGNOS-BASED NAVIGATION ON SUPPORT OF SEARCH-AND-RESCUE MISSIONS WITH UAVs", ION GNSS 2011, 2011-09-21/23, Portland, OR.



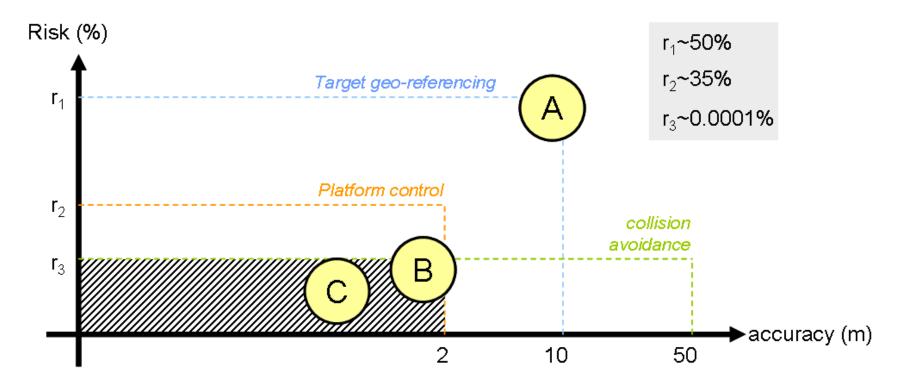
INTEGRITY: GEODETIC QUALITY CONTROL

In presence of **outliers** in measurement, precision-based integrity is not sufficient → **geodetic quality control** (Baarda, 60's, 70's): consistent, rigorous and systematic framework to the quality of geodetic networks (least-squares)

Full safe-navigation approach for UAV missions:

- -warn the user in case safety margins are overcome
- -provide the minimum detectable error

-what is the impact in the navigation solution of undetected errors (sensitivity)



(availability),

(controllability),

NON-METRIC RISK VS ACCURACY

A = standard IMU/GPS integration

improvable accuracy, no risk measure

B = CLOSE-SEARCH system (EGNOS-GPS/IMU/BA);

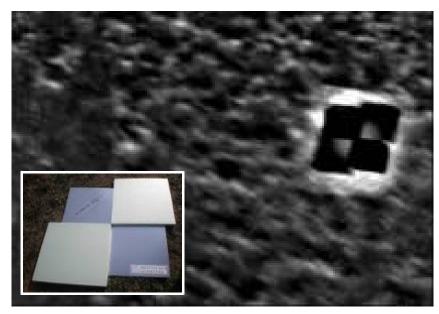
on the edge of accuracy and risk requirements

C = future EGNOS-GPS + GLONASS + Galileo + Compass/redundant IMU/BA/++

highly accurate, redundant, safe navigation

RESULTS AND LESSONS

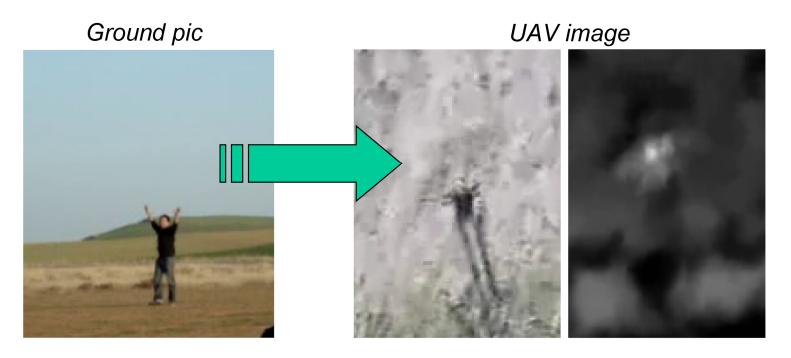
- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work



RESULTS ON PROJECT TEST CAMPAIGNS: IMAGING

Non-human targets (2m x 2m)
Investigate thermal response
Image GSD: 2 cm x 2 cm

Human targets (sitting and lying)
Assess detection & identification
Images GSD: 5.5 cm x 5.5 cm



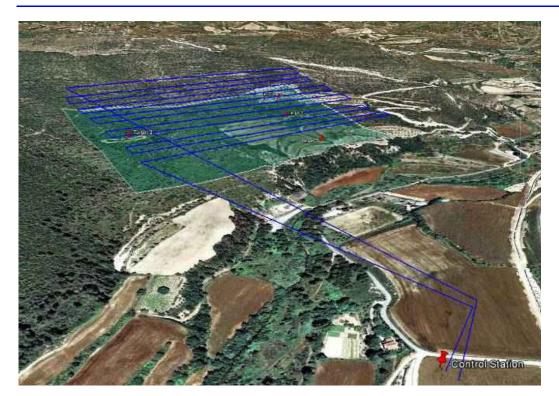
RESULTS ON PROJECT TEST CAMPAIGNS: IMAGING

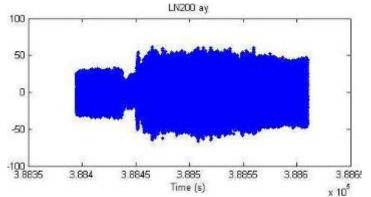
Combined RGB and thermal

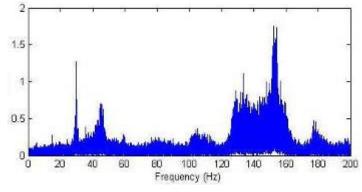
- GSD = 7.4cm x 7.4cm (both sensors), person standing and waving hands.

Geo-referencing ground targets

- The Flight Control System (FCS) yields UAV position and attitude at a high frequency
- Using a Digital Surface Model (DSM), the ground target coordinates are produced and provided to the rescue team.
- Results in Test Campaings showed georeferencing accuracy around 10 m x 10m







RESULTS ON PROJECT TEST CAMPAIGNS: NAVIGATION

		Test 1			Test 2	
	East	North	Height	East	North	Height
Mean	-0.56	0.12	-0.62	-0.82	-0.24	1.35
Std Dev	1.07	1.34	0.71	1.06	1.72	1.46
RMSE	1.21	1.35	0.94	1.34	1.74	1.99
11101	1.21	1.00	0.71	1.01	1.7.1	1.//

LESSONS LEARNED & FUTURE WORK

-Hard requirements on mission operations

... dull, dirty & dangerous

-EGNOS instead of RTK-based solutions

... sufficient accuracy, necessary integrity

-Updated high-precision DSMs for mission plan

...1st step to collision avoidance

-Smaller, better RGB and thermal cameras

... enable smaller UAVs to be operated

-Multi-use UAV platform

... exploit the UAV concept versatility

-UAV dynamics might be aggressive

... sensor modelling and fusion is a key task

