SYSTEM & RESULTS OF THE CLOSE-SEARCH PROJECT

P. Molina, I. Colomina	Institute of Geomatics	Castelldefels	ES
T. Vitoria	Asociación Industria Navarra	Pamplona	ES
P. F. Silva	DEIMOS Engenharia	Lisbon	PT
J. Skaloud	École Pol. Fédéral de Lausanne	Lausanne	СН
W. Kornus	Institut Cartogràfic de Catalunya	Barcelona	ES
R. Prades	Direcció General Protecció Civil	Barcelona	ES
C. Aguilera	European GNSS Agency	Brussels	EU

XXII ISPRS Congress, Melbourne – 2012-08-29

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°248137

ÉCOLE POLYTECHNIQUE

ICC Institut Cartogràfic

INSTITUT DE 9

deimos

AGENDA

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

THE PROJECT

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

SUMMER '94: A TRAGEDY & A 15 YEARS DREAM

CHARACTERISTICS OF SEARCH-AND-RESCUE MISSIONS

Item	Description	Requirements for aerial search	
Target	Lost mountaineers, mushroom	Lives in danger	
	collectors, disaster survivors	\rightarrow High priority	
		→ Segregated airspace	
Scenario	Remote, wild areas,	SAR teams in danger	
	 day & night, 	\rightarrow unmanned	
	 bad weather conditions 	→ thermal/RGB vision	
		→ safe navigation	
Procedure	Fast deployment, segregated	Rapid, effective response	
	areas	→ low weight & size	
	 1st phase: person is alive, searching paths, rivers 	\rightarrow no setup dependency	
	 2nd phase: person might not be alive, full area scan 		

UAVs FOR DULL, DIRTY & DANGEROUS MISSIONS

(PH

THE PROTOTYPE

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

THE CLOSE-SEARCH PROTOTYPE: ARCHITECTURE

 \bigcirc

ICC Institut Cartogràfic de Catalunya

THE UNMANNED HELICOPTER

Fuselage	
Structural Material:	rectangular section aluminum frame
Total length:	3.9 m.
Length (w/o blades):	2.9 m.
Height:	1.3 m.
Width:	0.9 m.
Rotor diameter:	3.2 m.
Empty weight:	40 kg.
мтоw	
Structure:	75 kg
Power rating:	18 hp (13.42 kw)
Туре:	1 engine, 1 cylinder, 2 stroke air- cooled,
	electric starter, gasoline (10I)
Performance	
Max speed tested -cruise speed:	50 km/h – 35 km/h
Endurance (10 I. fuel):	90'
Service ceiling tested:	ASL 1100 m
Wind speeds tested:	up to 40 km/h
Range	4 km (actual comm system)

deimos

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

GEOMÀTICA

The UAR-35 is an in-house development by the Asociación de la Industria Navarra (AIN)

- 8

ICC Institut Cartogràfic de Catalunya

THE GROUND CONTROL STATION

The Ground Control Station (GCS) is also an in-house development by AIN, mounted on a 4WD van, to perform:

- [Off-line and/or on-site] mission planning,
- Modifications of the mission plan on-the-go, if needed,
- Telemetry and on-board imaging monitoring

LOS-&-BLOS COMMUNICATION: A SAR REQUIREMENT

Communication in CLOSE-SEARCH				
Architecture	Line-of-sight	Beyond-Line-of-sight		
Technology	WiFi	WiMAX		
Range	(tested up to) 4 km	> 50 km		
Bit-rate	< 54 Mbit / s	30 – 40 Mbit / s		
Obstacle dependency	Yes	Yes/No (tower locations)		

THERMAL & OPTICAL IMAGING: SEEING IN THE COLD DARK

Why thermal and optical sensors?

-Cold nights are common SAR scenarios:

- Specially dangerous for humans
- Manned platforms do not usually operate at night

-RGB complements thermal vision:

- Discard false alerts
- Clothes, etc... might be useful hints

Thermal camera

→ Raytheon 2000B, 320 x 240 pixels

→ Sony CM-3120CDM, 582 x 500 pixels

EGNOS-BASED REDUNDANT NAVIGATION: FLYING SAFELY

SAFE NAVIGATION

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

INTEGRITY: FROM CIVIL AVIATION TO UAV MISSIONS

Molina et al., "INTEGRITY ASPECTS OF HYBRID EGNOS-BASED NAVIGATION ON SUPPORT OF SEARCH-AND-RESCUE MISSIONS WITH UAVs", ION GNSS 2011, 2011-09-21/23, Portland, OR.

ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

deimos

ICC Institut Cartogràfic

de Catalunya

INSTITUT DE 9

GEOMÀTICA

INTEGRITY: GEODETIC QUALITY CONTROL

In presence of **outliers** in measurement, precision-based integrity is not sufficient \rightarrow **geodetic quality control** (Baarda, 60's, 70's): consistent, rigorous and systematic framework to the quality of geodetic networks (least-squares)

Full safe-navigation approach for UAV missions:

deimos

INSTITUT DE 9

-warn the user in case safety margins are overcome(availability),-provide the minimum detectable error(controllability),-what is the impact in the navigation solution of undetected errors (sensitivity)

COLE POLYTECHNIQUE

ICC Institut Cartogràfic

NON-METRIC RISK VS ACCURACY

A = standard IMU/GPS integration

INSTITUT DE 🤋

improvable accuracy, no risk measure

B = CLOSE-SEARCH system (EGNOS-GPS/IMU/BA);

• on the edge of accuracy and risk requirements

C = future EGNOS-GPS + GLONASS + Galileo + Compass/redundant IMU/BA/++

ICC Institut Cartogràfic de Catalunya

highly accurate, redundant, safe navigation

COLE POLYTECHNIQUE

deimos

RESULTS AND LESSONS

- The CLOSE-SEARCH project
 - Motivation & concept
- The CLOSE-SEARCH prototype
 - Air, ground and communication
 - Thermal/optical sensors
 - Navigation subsystem
- Ultra-safe navigation for UAVs:
 - Integrity as a safety measure
 - Geodetic quality control
- Results
- Lessons learned and future work

RESULTS ON PROJECT TEST CAMPAIGNS: IMAGING

Non-human targets (2m x 2m)

Investigate thermal response Image GSD: 2 cm x 2 cm

Human targets (sitting and lying)

Assess detection & identification Images GSD: 5.5 cm x 5.5 cm

RESULTS ON PROJECT TEST CAMPAIGNS: IMAGING

Combined RGB and thermal

- GSD = 7.4cm x 7.4cm (both sensors), person standing and waving hands.

Ground pic

UAV image

Geo-referencing ground targets

deimos

- The Flight Control System (FCS) yields UAV position and attitude at a high frequency

- Using a Digital Surface Model (DSM), the ground target coordinates are produced and provided to the rescue team.

- Results in Test Campaings showed georeferencing accuracy around 10 m x 10m

RESULTS ON PROJECT TEST CAMPAIGNS: NAVIGATION

		Test 1			Test 2	
	East	North	Height	East	North	Height
Mean	-0.56	0.12	-0.62	-0.82	-0.24	1.35
Std Dev	1.07	1.34	0.71	1.06	1.72	1.46
				<u>.</u>		
RMSE	1.21	1.35	0.94	1.34	1.74	1.99

ICC Institut Cartogràfic de Catalunya

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

LESSONS LEARNED & FUTURE WORK

-Hard requirements on mission operations

... dull, dirty & dangerous

-EGNOS instead of RTK-based solutions

... sufficient accuracy, necessary integrity

-Updated high-precision DSMs for mission plan

...1st step to collision avoidance

-Smaller, better RGB and thermal cameras

... enable smaller UAVs to be operated

-Multi-use UAV platform

... exploit the UAV concept versatility

-UAV dynamics might be aggressive

deimos

... sensor modelling and fusion is a key task

ICC Institut Cartogràfic