

Detektion und Lokalisierung von GNSS Störsendern zur Sicherung kritischer Infrastruktur im Alpenraum

Sascha M. Bartl TeleConsult Austria GmbH

AHORN 2015

26. November 2015, Wildhaus (CH)

- Frequentis AG
- Brimatech Services GmbH

26.11.2015

Das Projekt GAIMS-2 wurde durch das BMVIT, vertreten durch die FFG, im Rahmen des österrreichischen Förderprogramms ASAP gefördert.

Problemstellung

(P. Berglez)

26.11.2015

TeleConsi

Probleme:

26.11.2015 <

 niedrige Leistung
 thermisches Rauschen

Probleme:

- niedrige Leistung
- thermisches Rauschen

Störungen:

Mehrweg

Probleme:

- niedrige Leistung
- thermisches Rauschen

Störungen:

- Mehrweg
- Refraktion

26.11.2015 <

Probleme:

- niedrige Leistung
- thermisches Rauschen

Störungen:

- Mehrweg
- Refraktion
- Atmosphäre

26.11.2015 <

Probleme:

- niedrige Leistung
- thermisches Rauschen

Störungen:

- Mehrweg
- Refraktion
- Atmosphäre
- Störsender

Probleme:

- niedrige
 Leistung
- thermisches Rauschen

Störungen:

- Mehrweg
- Refraktion
- Atmosphäre
- Störsender

Charakteristik

 erhöhtes Rauschen verdrängt das Nutzsignal

Angebot an Jammern

- Low-cost
- Middle-class
- High-end

Bekannte Störungen

- Newark
- Kaohsiung
- Graz

(www.jammer4uk.com)

(www.jammer-store.com)

Der Betrieb von Jammern ist in der gesamten EU illegal!

26.11.2015 <

Charakteristik

- Verfälschung der Messungen durch Aussenden falscher Signale
- Gezielte Störung eines bestimmten Empfängers/Nutzers

Entwicklung

- (Noch) nicht kommerziell verfügbar
- Aktueller Forschungsschwerpunkt (zB. University of Texas)

Gefahrenpotenzial

GNSS Empfänger können durch Spoofer signifikant und gezielt gestört werden, ohne dies zu bemerken!

26.11.2015 <

Detektion

Verhältnis von Signalstärke zu Rauschen pro Frequenz:

Detektion

- Nominale Sendeleistung der Satelliten ist konstant
- Signalstörungen bestimmen Schwankungen des C/N₀
- Vergleich mit theoretischem Wert
- Verhältnis zwischen allen Satelliten ist ausschlaggebend

9 S. Bartl

AHORN 2015

9 S. Bartl

AHORN 2015

26.11.2015

TeleConsu

Verteilung der empfangenen Leistung über das Spektrum:

$$S_{xx}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} r_{xx}(t) e^{-j\omega t} dt = \mathcal{F} \{ r_{xx}(t) \}$$
$$r_{xx}(t) \dots Autokorrelations funktion$$

Detektion

- GNSS Signale liegen unter dem thermischen Rauschen
- Spezielle Autokorrelationseigenschaften der GNSS Signale
- Theoretische Verteilung des Leistungsspektrums ist bekannt
- Leistung in den GNSS Frequenzbändern ist ausschlaggebend

Lokalisierung

26.11.2015 <

Charakteristik

- Messung von Unterschieden in der Laufzeit
- Unabhängig von ausgesandter Leistung
- Geometrie: Schnitt von Hyperbeln (Hyperboloidschalen)

Differenzbildung (Beobachtungsgleichungen, 2D)

$$P_{R}^{(i)} - P_{R}^{(j)} = \Delta P_{R}^{(ij)} = 10 \cdot \alpha \cdot \log 10 \left(\frac{d_{j}}{d_{i}}\right)$$
$$\Delta P_{R}^{(ij)} = f(\mathbf{x_{0}}, \mathbf{y_{0}}, \alpha)$$

 \Rightarrow mindestens 3 Beobachtungsstationen sind notwendig!

26.11.2015 < < <

Difference in Received Signal Strength DRSS

Ergebnisse

26.11.2015

AHORN 2015

DRSS Lokalisierung Erreichbare Genauigkeit - 3 Beobachtungsstationen

19

DRSS Lokalisierung Erreichbare Genauigkeit - 3 Beobachtungsstationen

Ausblick

Einfache Spoofing Simulation

- 1. Konstellation für korrekte Empfängerposition
- 2. Konstellation für bewegten Empfänger (Spoofing Trajektorie) mit höherer Leistung
- 3. Kombination beider Signale
- 4. Prozessierung mit SDR / GIMT
- Signalgenerierung
 - GIPSIE[®] Satellite Constellation Simulator (modifiziert)
 - GIPSIE[®] Intermediate Frequency Simulator (modifiziert)

Ziel der Simulation

Erkenntnis über Gefahrenpotential und Entwicklung von Algorithmen zur Detektion und Mitigation von GNSS Spoofern.

- Störsender stellen eine große Gefahr für GNSS dar (vor allem für sicherheitskritische Anwendungen).
- Der Einsatz von Jammern ist in den vergangenen Jahren deutlich gestiegen.
- Zuverlässige Detektion von Störsendern ist durch Kombination verschiedener Algorithmen möglich.
- Erste Versuche zur Lokalisierung von Jammern basierend auf empfangener Signalstärke.
- Einfache Simulation zeigt die Gefahr von Spoofern.

Detektion und Mitigation von Störsendern ist zur Sicherung kritischer Infrastruktur unerlässlich!

Detektion und Lokalisierung von GNSS Störsendern zur Sicherung kritischer Infrastruktur im Alpenraum

Sascha M. Bartl

- Rettenbacher Straße 22, 8044 Graz, Austria
- Sascha.bartl@tca.at
- +43-316-890971-10
- www.tca.at

27 S. Bartl

AHORN 2015

26.11.2015 < <

TeleConsi

