Drohne für ein hoch genaues Korridor-Mapping

Philipp Clausen Martin Rehak Jan Skaloud

Geodetic Engineering Laboratory TOPO, EPFL, Switzerland

27. November 2015 Ahorn 2015, Wildhaus

Motivation

What's on the menu

- Corridor Mapping
- MAV Platform
- Methodology & testing
 Calibration fields
 - System calibration
- Mapping & "orientation" performance

Conclusion

Details on corridor mapping

TOPO plane - Structure

Characteristics

- Custom built
 - 150 Euro frame (the same as MAVinci UAV)
 - Off-the-shelf components
 - 1630 x 1170 mm
 - Operational weight 2800g
- Endurance 40 min with 600 g of payload
- Flying speed 16-20 m/s
 - Pixhawk (ETHZ) autopilot

TOPO Plane – Photogrammetry Payload

- Redundant-IMU (A)
 - FPGA board
 - 1-4 x MEMS IMU
 - 250 500 Hz

Camera (B)

- Sony NEX 5T camera (16 Mpx)
- 16 mm lens (used in test)
- synchronization module (flash)

□ GNSS

- multi freq., PPS, Event
- GPS/Glonass L1/L2 antenna

System & Sensor Calibration

Guerrier, S., Skaloud, J., Stebler, Y. Victoria-Feser, M.-P. Wavelet-variance-based estimation for composite stochastic processes, **Journal of the American Statistical Association**, 108(503): 1021-1030.

System & Sensor Calibration

Lever-arms

- GNSS antenna body frame (IMU)
- Camera body frame
 - "Pseudo-measurement" technique

System & Sensor Calibration

Flights

- Total Calibration field
 - 📕 100 ha
 - 26 control/check points
 - ~30 m height differences
- Calibration block
 - Strips: A-E + H-J
 - Two heights: **120** and **150 m**
 - 17 control points
- Corridor
 - Strips F+G
 - 1200 x 180 m long
 - 9 check points
- Statistics

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

- 520 images
 - 459 used for calibration
 - 61 for corridor evaluation
 - Average GSD 3.8 cm

Processing Steps

- Image measurements auto & manual (GCP) via Pix4D
- □ GNSS antenna positions GrafNav (10 Hz)
- □ IMU position & attitude custom filter/smoother
- Camera position & attitude transfer/adapt. CAMEO
- 1. Calibration block
 - Camera self calibration + bore-sight estimation
- 2. Corridor
 - Bundle adjustment with POS and POS/ATT, no GCPs
 - Pix4D, several processing approaches

Mapping Accuracy – Corridor

- No GCPs in the adjustment
- Fixed IO parameters, bores-sight and lever-arm
- Evaluated at 9 check points
- Angular observation plays a role

EO parameters	Residual	Position [m]	Height [m]
Position only	MAX	0.147	0.114
	MEAN	0.037	-0.008
	RMS	0.070	0.070
Position + Attitude	MAX	0.062	0.136
	MEAN	0.009	-0.003
	RMS	0.029	0.070

DTM Mapping Accuracy – Corridor

- Processed in Pix4D
 - Recalibrated IO
- Block: Complete set of images + all GCPs = reference
- Corridor: 3 different processing scenarios
 a) 9 GCPs - indirect
 b) 4 close GCPs - indirect
 c) NO GCPs - integrated

Conclusion

MAV: hobby-grade plane + open source autopilot + correct instruments = **an affordable MAV mapping tool**

Sensor calibration

- One-time workflow for constant parameters
- Good system calibration is needed.
- Time varying parameters (IO) can be recalibrated in-flight.
- Achieved accuracy in corridor with POS/ATT: 1.5 GSD in position and 2 GSD in height without GCPs.

Conclusion

One step closer to accurate direct sensor orientation with MAVs

Requirements

. . .

- Redundant-IMU with higher accuracy is needed.
- Fault Detection and Identification (FDI) algorithm should be applied.

Déjà vu in aerial photography with manned aircraft?

To find more about the specific topic of sensor orientation on MAVs (and other platforms)

http://www.eurocow2016.org/ Feb. 10-12, 2016 EPFL campus

Reference

Rehak, M. and Skaloud, J.: FIXED-WING MICRO AERIAL VEHICLE FOR ACCURATE CORRIDOR MAPPING, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-1/W1, 23-31, doi:10.5194/isprsannals-II-1-W1-23-2015, 2015.

