

Slope Monitoring in the Swiss Alps by GNSS: Velocity Determination and Time Series Analysis

Roland Hohensinn, Alain Geiger, Philippe Limpach Institute of Geodesy and Photogrammetry, Chair for Mathematical and Physical Geodesy AHORN 2018, Veysonnaz, Switzerland

Motivation

Understand processes that could possibly trigger slope movements

Temperature? Precipitation? Snow melt? Seismic-induced?

... effect on slope movements?

Debris avalanche in Bondo, SUI in August 2017 (Source: infoticker.ch)

... and rapidly provide geodetic information for Early Warning Systems

Overview

Geodetic GNSS (like GPS) can resolve ground movements ranging from

Millimeters per Year to Millimeters per Second

Long-term analysis

Based on static GNSS.

Possible application:

Landslide Monitoring

Short-term analysis

Real-time velocity estimation.

Possible application:

Lanslide Detection, Earthquake Early Warning

Long-Term Analysis

X-Sense and X-Sense2 (2009 – 2017)

Monitoring of slope movements and rockfalls in the Swiss alps

Long-Term Analysis

X-Sense and X-Sense2 (2009 – 2017)

Monitoring of slope movements and rockfalls in the Swiss alps (autonomous GNSS stations)

GNSS Geomonitoring and Processing @MPG

Monitoring stations at Great Aletsch glacier, Glarnerland ...

Long-Term Analysis

X-Sense and X-Sense2 (2009 – 2017)

Monitoring of slope movements and rockfalls in the Swiss alps (autonomous GNSS stations)

> **GNSS Geomonitoring** and Processing @MPG Monitoring stations at

Great Aletsch glacier, Glarnerland ...

Coordinate timeseries from more than 40 stations are available, spanning several years

Time Series Decomposition

- **Station Velocity: Time differentiation** of coordinate series (from static sol.)
- Decompose time series into individual contributions ...

Trend (T) and Seasonal (S) effects extracted by low-pass filtering

Decomposition of additive time series

Source: https://a-little-book-of-r-for-timeseries.readthedocs.io/en/latest/src/timeseries.html

Station JAE1 (Univ. of Fribourg)

JEGI (VS)

Aktive Blockgletscher Active rock glacier

Station BH10 (X-Sense)

Station DI07 (X-Sense)

Station GG52 (X-Sense)

Grabengufer Rock Glacier

Predict Time-To-Failure | Temperature Correlation

Time-To-Slope-Failure:«Inverse Velocity» approach

 Link between slope movements and temperature variations

Short-Term Analysis

- Instantaneous Station **Velocity Estimation**
 - Based on time-derivative of GNSS phase measurements – velocity accuracy down to sub-mm/s possible
 - Standalone solution No reference station data needed
 - Goal: Real-time movement detection based on velocity estimates movement information within seconds

Results – Static and Dynamic Tests

Static Tests

- Septentrio PolaRx receiver and choke ring antenna, 1 Hz Sampling Rate
- Reveal observation characteristics
- Minimum Detectable Velocity

Dynamic Tests (with a KUKA Robot)

- Very precise ground truth (robot)
- Test data: Oscillation with T=100 s, A=10 cm, horizontal movement
- Maximum Velocity ~ 6 mm/s

Figure: KUKA robot and GNSS equipment (LHS) and KUKA control unit (RHS)

Static Tests – Quality of Models and Observations

"Minimum Detectable Velocity based on GNSS Doppler Observables". Proceedings of the European Navigation Conference (ENC), 2018, Gothenburg, Sweden

Dynamic Tests: Sinusoidal Movement

Results for a GPS+Galileo experiment

«Movement Detection based on High-Precision Estimates of Instantanteous GNSS Station Velocity», Journal of Surveying Engineering, in print

Application: GNSS Seismology

- Earthquakes central Italy 2016
- Data from "RING" GNSS network
- Processing for Mw 6.5 earthquake near Norcia
- Station distance from epicenter:
 Few km up to ~180 km
- Processing:
 - 42 stations
 - Epoch-wise velocity estimation (batch mode)
 - Epoch-wise movement detection
 - Decision criterium: Cumulative relative frequency (7 out of 8 Epochs)

Results – Earthquake Detection and Localization

Earthquake was detected in all GPS stations -- Seismic Pand S-wave arrivals (left); Hypocenter localization comes very close to a official ('best') seismic solution (bottom)

Sensors «Stand-Alone GNSS Sensors as Velocity Seismometers: Real-Time Monitoring and Earthquake Detection"

Summary

- GNSS is capable of monitoring slope movements from millimeters per year to millimeters per second
- Long-term analysis Static GNSS; Understand processes that trigger slope movements Seasonal effects → Temperature? Cyclic and irregular components → Snow melt, precipitation?
- Short-term analysis Instantaneous Velocity Estimation; Contribute to real-time Early Warning System → Earthquake Early Warning
- Effects causing slope movements need to be further investigated (master thesis planned)

