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Übersicht
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Sensorkalibrierung: Rückgrat der Navigation

Kalman Filter

Initialisierung

Konvergenz

Korrelation

Kalibrierung im Labor / vor Ort

Bias, Skalierung, Orthogonalität

Versch. Winkel/Ausrichtungen
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Stochastische Prozesse: Signalanalyse
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Challenge

Normalerweise

“Graphische” Allan Variance

Nicht alle Modelle
Fehler
“Ineffizient” (nicht automatisch)

MLE (mit EM)

rechenintesiv
Divergent mit “komplexen” Modellen

Wir brauchen

Komplexe time-series Modelle

Effizient

Robust gegen Outliers
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Generalized Method of Wavelet Moments

Hauptidee

Gebrauch der Wavelet Variance (WV)

Filtern des Signals mit der Wavelet Funktion

Zusammenhang zwischen den Modellparametern θ und
deren WV ν(θ) (i.e. mapping θ 7→ ν(θ)).

“Umkehren” dieser Eigenschaft durch Vergleich von
empirischer (observierte WV/AV ν̂) und der theoretischen
WV des Modells model ν(θ).

Definition

Optimierung des Problems mit
Gewichtungsmatrix Ω:

θ̂ = argmin
θ∈Θ

(ν̂ − ν(θ))T Ω (ν̂ − ν(θ))
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GMWM Beispiel: Navchip
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Online GUI:

Fig. 4: Overall view of the GUI with all the information as seen online. The upper part displays the graphical and numerical
results. The lower parts allow for data-uploading and selection, noise-modelling, and setting of options related to the computations.

C. Model Identification (iterative)

The log-log plot of the WV is useful in order to understand
what kind of models underlie the provided error signal. An
example of how this plot is useful in this sense is given in
Figure 3, where different slopes and characteristics of the
plot can indicate the presence or absence of certain stochastic
models. If we compare the latter plot with the one given in
Figure 5 it is clear that the signal is composed at least of a
QN, WN and several GM.

In order to check which combination of models appear to
fit best, we select the desired models in the middle part of
the GUI and use the Fit Model button. The result of selecting
the composite model made by the sum of a QN + WN + GM
noise (error) models is shown in Figure 6a and is represented
by the orange line. Given that the model (orange line) does
not entirely lie within the confidence intervals of the empirical
WV (blue line), we decide to add an additional GM, as the
middle and larger scales show a significant difference between

the empirical and the theoretical WV. The result is plotted in
Figure 6b, where we see that the model appears to better fit
the empirical WV.

Although adding a GM model greatly improved the visual
fit as well as the objective function around the middle scales,
there still persists a small difference at some scales. Thus, we
decide to add another GM process to our model. This final
solution is presented in Figure 6c which shows an overall
(almost) perfect match which however could be considered
excessive given the size of the confidence intervals at the last
(larger) scales. In any case, it would be appropriate that the
model that is chosen in the end lies within the confidence
interval of the empirical WV (blue color). In this case we can
stop the iterative model identification (which can also result
in a set of different models) and go to the next step to extract
the parameters of these models.
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GMWM Beispiel: Empirische WV ν̂

10 / 18



GMWM Beispiel: Datasheet
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GMWM Beispiel: Theoretische WV ν(θ)

Fig. 2: Comparison of the gyroscope noise-level between the
MEMS IMUs Navchip (blue) and the MTi-G (orange).

an extremely complex stochastic structure which requires more
complicated models to characterize them. Figure 2 gives an
example of the complexity of the stochastic noise. The shape
and the amount of the stochastic properties of the XSENS MTi-
G compared to the Navchip are clearly visible. Their individual
characterization is important as they are not equal at all.

In order to understand and estimate the parameters of
these complex models, different (statistical) methods have been
adapted and/or developed. To cite a few, there is the Maximum
Likelihood approach estimated via the so-called Expectation-
Maximization algorithm [1]–[3] as well as a linear regression
approach based on the log-log-representation of a quantity
called Allan Variance (AV) [4]–[7]. However, these methods
suffer from various limitations going from numerical instability
and computational inefficiency to statistical inconsistency. For
this reason, a recently proposed approach has been used to
build a new computational platform for sensor calibration
which makes use of the quantity called Wavelet Variance (WV)
in order to deliver an estimation framework whose name is
Generalized Method of Wavelet Moments (GMWM) [8]. The
latter method not only allows to estimate considerably complex
stochastic models, but allows to do so in a numerically stable,
computationally efficient, and statistically consistent manner
for any kind of signal or measurement.

In this paper we illustrate how the GMWM can be em-
ployed through the newly developed computational platform
provided by the gmwm package (programmed in C++) which
can be found in the open-source statistical environment R. In
order to facilitate the use of this tool for practitioners inter-
ested in sensor calibration, a Graphical-User-Interface (GUI)
called gui4gmwm has been created. To introduce these tools,
Section II will highlight some basic statistical theory behind
the GMWM and its related features. These are then put into
practice in Section III to study and model the noise structure
of the two IMUs mentioned in Figure 1 and Figure 2 by means
of the online available GUI. We will illustrate the basic steps
needed for the stochastic calibration of an inertial sensor and
see its impact on the final navigation solution. Finally, Section
IV concludes by highlighting future developments, whereas the
appendix gives the practical information on the GUI (where to
find it, additional information and bug-reporting).

II. THEORY AND IMPLEMENTATION OF THE GMWM

The WV, similarly to the AV, is commonly represented
through a log-log-plot. In general terms, to obtain this quantity
the observed errors are subject to a kind of weighted-average
over different “scales” of observations (i.e. the averages are
applied to a certain number of observations at a time). If we
refer to these scales with the letter j, then the estimated (or
empirical) WV, denoted as ν̂2j , can be directly calculated with
the formula

ν̂2j =
1

Mj

Mj∑

t=1

W 2
j,t, (1)

where Mj is the number of weighted-averages, formally called
wavelet coefficients and denoted as Wj,t, issued from the scale
of decomposition j. In general the total number of scales is
defined as J = blog2(T )c−1 with T denoting the total number
of datapoints [9].

Supposing we have J scales (or levels) using a technique
called the maximum-overlap wavelet decomposition (which is
a way of applying the averages to the data) and using weights
given by the so-called Haar wavelet filter, then we can define
the vector of empirical WV as ν̂ = [ν̂2j ]j=1,...,J .

The first step to explain the stochastic behaviour of the
errors is to try and understand the kind of stochastic model
that can best describe them. These can be identified using
the log-log plot of the WV and Figure 3 visualizes some
of these models (their sum is represented with a red-dotted
line) that are also listed in Table I. This plot shows that it
is relatively simple to detect and associate one type of model
but when several models jointly explain the errors then their
identification becomes more problematic. Going back to Table
I, this collects all the models that the aforementioned software
can deal with and, in particular, the last column shows the
parameters that we are interested in estimating (i.e. the values
that in some way explain the behaviour of the measurements)
that we generally denote as θ.

Once a model is identified by the user, it is possible to
obtain a known form for the WV (called theoretical WV)
which depends on the parameters θ and which will be denoted
as:

ν2j (θ) = Var[Wj,t(θ)], (2)

where Wj,t(θ) represents the wavelet coefficients issued from
the jth scale of the wavelet decomposition which are a function
of the parameter vector θ and Var[·] represents the variance
operator (for more details see [10] where a similar notion is
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Fig. 3: Example log-log-plot showing the influences of the dif-
ferent models with their shape. Red dotted: sum of theoretical
noise models ν(θ). 12 / 18



GMWM Beispiel: nicht komplettes Modell
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GMWM Beispiel: nicht komplettes Modell
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GMWM Beispiel: komplettes Modell
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GMWM Beispiel: überangepasstes Modell,
WVIC
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Resultat
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Zusammenfassung

Projekt: GMWM als Zusammenarbeit

Online Tool: shiny.science.psu.edu/szg279/gui4gmwm

mehr Infos: https://github.com/SMAC-Group/gui4gmwm

Paper: P. Clausen, J. Skaloud, R. Molinari, J. Lee and S.
Guerrier, Use of a new online calibration platform with
applications to inertial sensors, in IEEE Aerospace and
Electronic Systems Magazine, vol. 33, no. 8, pp. 30-36,
August 2018. doi: 10.1109/MAES.2018.170153
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