Kalibration Stochastischer Eigenschaften durch ein Online-GUI: Anwendungsbeispiel IMU und Navigation

Philipp Clausen, Jan Skaloud Geodetic Engineering Laboratory TOPO EPFL, Switzerland

22./23. November, 2018, Veysonnaz, VS, CH

\blacktriangleright Übersicht

- ► Sensor Kalibration
- ► Online GUI
- \blacktriangleright Resultat

Übersicht

Kalman Filter

- Initialisierung
- Konvergenz
- Korrelation

Kalibrierung im Labor / vor Ort

- Bias, Skalierung, Orthogonalität
- Versch. Winkel/Ausrichtungen

Stochastische Prozesse: Signalanalyse

5/18

Challenge

Normalerweise

- "Graphische" Allan Variance
 - Nicht alle Modelle
 - Fehler
 - "Ineffizient" (nicht automatisch)
- MLE (mit EM)
 - rechemintesiv
 - Divergent mit "komplexen" Modellen

Wir brauchen

- Komplexe time-series Modelle
- Effizient
- Robust gegen Outliers

Generalized Method of Wavelet Moments

Hauptidee

- Gebrauch der Wavelet Variance (WV)
- Filtern des Signals mit der Wavelet Funktion
- Zusammenhang zwischen den Modellparametern θ und deren WV $\nu(\theta)$ (i.e. mapping $\theta \mapsto \nu(\theta)$).
- "Umkehren" dieser Eigenschaft durch Vergleich von empirischer (observierte WV/AV $\hat{\boldsymbol{\nu}}$) und der theoretischen WV des Modells model $\boldsymbol{\nu}(\boldsymbol{\theta})$.

Generalized Method of Wavelet Moments

Hauptidee

- Gebrauch der Wavelet Variance (WV)
- Filtern des Signals mit der Wavelet Funktion
- Zusammenhang zwischen den Modellparametern θ und deren WV $\nu(\theta)$ (i.e. mapping $\theta \mapsto \nu(\theta)$).
- "Umkehren" dieser Eigenschaft durch Vergleich von empirischer (observierte WV/AV $\hat{\boldsymbol{\nu}}$) und der theoretischen WV des Modells model $\boldsymbol{\nu}(\boldsymbol{\theta})$.

Definition

Optimierung des Problems mit Gewichtungsmatrix Ω :

$$\hat{ heta} = \mathop{\mathrm{argmin}}_{ heta \in \Theta} \ (\hat{
u} -
u(heta))^{\mathsf{T}} \Omega \left(\hat{
u} -
u(heta)
ight)$$

GMWM Beispiel: Navchip

Online GUI:

9/18

GMWM Beispiel: Empirische WV $\hat{\nu}$

GMWM Beispiel: Theoretische WV $\nu(\theta)$

GMWM Beispiel: nicht komplettes Modell

GMWM Beispiel: nicht komplettes Modell

GMWM Beispiel: komplettes Modell

GMWM Beispiel: überangepasstes Modell, WVIC

Resultat

Resultat

Projekt: GMWM als Zusammenarbeit

- Online Tool: shiny.science.psu.edu/szg279/gui4gmwm
- mehr Infos: https://github.com/SMAC-Group/gui4gmwm
- Paper: P. Clausen, J. Skaloud, R. Molinari, J. Lee and S. Guerrier, Use of a new online calibration platform with applications to inertial sensors, in IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 8, pp. 30-36, August 2018. doi: 10.1109/MAES.2018.170153

