

Real-Time GNSS Software Receiver: Challenges, Status, and Perspectives

Marcel Baracchi-Frei & Grégoire Waelchli

Navigare '09, Neuchâtel, June 17, 2009

Presentation outline

- Motivation
- History
- Definition and types
- Challenges
- Status
- Outlook
- Conclusion

Motivation

- More and more computing power available
- Use of existing resources (CPU, memory, ...)
- Low cost implementation possible
- Flexible solution for research and development
- Flexibility for adapting to new signals and frequencies

Introduction

- History
 - □ Start in the 1990's: Project Speakeasy (U.S. D.o.D.)
 - □ 1990: Utilisation of FFT for CDMA system
 - □ 1996: Bandpass sampling introduced by Ohio University
 - □ 2001: Real-time capable software receiver for GPS L1 C/A on a DSP (Stanford University)

Software Receiver: Definition

- Base-band signal processing is performed in software
- Analog-to-digital converter (ADC) as close as possible to the antenna

Software Receiver: Types

Challenges: Data Rate

- Direct sampling
 - □ GPS L1 signal: 393 MB/s (1 bit quantization)
 - □ Challenge: High data rate
- Sub-sampling (respecting signal bandwidth)
 - \square GPS L1 signal: 500 kB/s (Fs = 4 MHz)
 - □ Challenge: Current hardware and resources limitations

Challenges: Base-Band Processing

- Generation of local code and carrier (in real-time)
 - □ In hardware
 - Numerically Controlled Oscillator (NCO)
 - □ In software
 - CPU load for real-time generation: 3 GHz Pentium 4 @ 100%
 - Solution: pre-calculation or new methods (pseudo real-time)
- Accumulation
 - □ Perfomed in real-time and at sampling rate
 - □ Independent for every channel

Status: Data Processing

- Single Instruction Multiple Data (SIMD) operations
 - □ To parallelize the operations
 - □ Up to 600% performance improvement claimed
 - □ CPU specific

Status: Data Processing

- Bitwise operations (vector processing)
 - □ To parallelize the operations
 - □ CPU independent
 - □ Bit-depth dependent

Status: Data Processing

- Distributed arithmetic
 - □ To combine the bitwise and integer operations

Status: Code Generation

- Real-time generation not recommended
- Pre-calculate the code
 - □ In an oversampled representation
 - □ With different phase offsets
- Doppler shift?
 - □ Assuming Doppler frequency of 0 Hz
 - Correlation power loss of < 0.014 dB (for Doppler < 10 kHz)
- Almost all SR solutions pre-calculate the code

Status: Carrier Generation

- Needed for Doppler removal
- Real-time generation not recommended
- Pre-calculate the carrier and store in look-up tables
 - □ Coarse frequency grid (error compensated by phase rotation)
 - □ Oversampled representation
 - □ Zero phase or set of initial phases
- Removing the Doppler concurrently for all satellites
 - □ Loss (due to frequency error) compensated with partial integration and phase rotation
 - □ Difficult to implement

Status: Acquisition

- Serial search
 - □ Two dimensional search (code phase / Doppler frequency)
 - □ Power hungry
 - □ Not used in software receivers
- Parallel code / frequency search
 - □ Use of FFT
 - ☐ High memory requirements
 - □ Preferred solution for software receivers

Status: Available Software Receivers

- At university and commercial level
- Not only programming solutions but also realization of dedicated RF front-ends
- Two classes of PC-based software receivers
 - ☐ Use of commercial available ADC cards
 - □ Interate an ADC and an USB interface into the front-end
- Growing market for embedded solutions

Outlook

Technical

- □ Availability of higher performances in the embedded market is one of the key-driver for the development
- □ Use of additional available hardware (for example GPUs)
- □ Flexibility for research and development laboratories

Market

□ Software receivers are asked (possibility to adapt to new frequencies and modulations, short time-to-market)

Conclusion

- Software receivers will become important in the next years
- Challenges still exist
- Improvements and development needed
- Working solutions (academic and commercial) exist

Contact

Marcel Baracchi-Frei

Project Leader / PhD Student
University of Neuchâtel
A.L. Breguet 2
CH-2000 Neuchâtel

Phone: +41 32 718 34 28

marcel.baracchi@unine.ch

http://esplab.epfl.ch