Past and On-going Galileo Research Projects at EPFL-IMT-ESPLAB

Navigare’09

Dr. Cyril Botteron

June 17, 2009
Agenda

- Intro to GNSS
 - GNSS modulations, main receiver blocks, ...

- Selected past projects
 - GPS Watch, GRDB, GPS L1/L2 rx, ...

- Some current projects
 - GAMMA-A, Signature, SARBACAN, SNSF GNSS, SoftRx, ...

- From GNSS to UWB
BPSK versus BOC Modulation

- Example of BPSK(m)
 - PRN code rate: $m \times 1.023$ MHz

- Binary Offset Carrier: BOC(n,m)
 - The code is modulated by a square wave
 - subcarrier frequency: $n \times 1.023$ MHz
 - PRN code rate: $m \times 1.023$ MHz

- Example of a BOC(1,1)
MBOC Modulation

- MBOC Modulation:

 \[G_{MBOC}(f) = \frac{10}{11} G_{\text{SinBoc}(1,1)}(f) + \frac{1}{11} G_{\text{SinBoc}(6,1)}(f) \]

- Galileo E1 CBOC
 - CBOC(6,1,1/11) for both pilot and data
 - 50%/50% power split pilot/data

- GPS L1 TMBOC
 - TMBOC(6,1,4/33) for pilot
 - BOC(1,1) for data
 - 75%/25% power split pilot/data

Power Spectral Density (dBW/Hz)

Offset with respect to the carrier [MHz]
Main GNSS Receiver Blocks

\[s(t) = A d(t) c(t) \cos(2\pi f_0 t + \phi) \]
GNSS - Current and intended signals

Green and blue signals: Open or commercial signals
Red signals: Military signals, Public Regulated Services
Grey signals: Usage of filed signal not yet defined officially

Source: "GNSS Signals and Spectra,” ICG ICG-4-02, Sept.4-7, 2007
Agenda

- Intro to GNSS
 - GNSS modulations, main receiver blocks, ...

- Selected past projects
 - GPS Watch, GRDB, GPS L1/L2 rx, ...

- Some current projects
 - GAMMA-A, Signature, SARBACAN, SNSF GNSS, SoftRx, ...

- From GNSS to UWB
GPS Watch

- The beginning of the GNSS adventure at IMT! (from ~ 1995 to 1998)
 - GPS watch’s goals:
 - Dimensions: $57 \times 47 \times 20$ mm3
 - Autonomy > 1 year (watch)
 - Low power GPS rx

- IMT’s contributions:
 - Low power receiver architectures and algorithms
 - Realization of a low power 12 channels GPS L1 C/A baseband ASIC (<40mA using TSMC CMOS 0.5um)

[Far00] “GPS Watch - An Analogue Watch Including a Very Low Power GPS Receiver,” ION GPS 2000
GRDB – Galileo Receiver for Distress beacon (1/3)

- Cospas-Sarsat status (05.2009):
 - 5 low-altitude earth orbit satellites (LEOSAR)
 - 4 geostationary earth orbit satellites (GEOSAR)
 - 29 mission control center (MCC)
 - 406MHz beacon population: > 600’000
 - 121.5/243 MHz processing ceased on Feb. 01, 2009
 - Persons rescued in 2007: 2386 (562 distress)
 - Since inception in 1982: 24798 persons

- Localization by LEOSAR (Doppler effect):
GRDB – Galileo Receiver for Distress beacon (2/3)

- Galileo Contribution to Cospas-Sarsat
 - Galileo SAR Service
 - Cospas-Sarsat space segment replacement
 - Global and drastic reduction of alert delay
 - New localization based on new principles
 - Reduction of false alert quantity (SAR RLM)

- GRDB’s goals (2005-2007)
 - Beacon prototype platform
 - Galileo BOC(1,1) receiver
 - Operations in presence of 20dBm/406MHz
 - SAR RLM decoding and new operating modes
GRDB – Galileo Receiver for Distress beacon (3/3)

- IMT’s contributions:
 - Novel front-end architecture
 - Novel correlator HW implementation

[Cha07] "Galileo E1b,c RF FE for SAR applications," ENC-GNSS 07
[Wae07] "Real-time Galileo E1 signal acquisition and tracking scheme", ENC-GNSS 07
[Cha06] "Galileo L1 RF FE Optimized for Narrowband Interferers Mitigation," ION GNSS 2006
A Low-Power L1/L2C RF FE Architecture

Proposed low power solution:
- Shifted LO solution (without quadrature mixer)
- Selection using a Weaver architecture
- Power consumption \sim L1 heterodyne FE

[Cha05] “A Low Power RF Front-End Architecture for an L1/L2CS GPS Receiver,” ION GNSS 2005
GPS L1/L2 – CTI Project (1/2)

- GPS L1C/A L2C receiver platform for time transfer applications (2004-2007)
 - GPS Disciplined oscillator (GPSDO)
 - Ionospheric delay
 - Accuracy & stability goals:
 - Max PPS error <25ns (over 24 hours w.r.t. UTC)
 - Mean MTIE < 40ns (for interval over 1 week)
 - Holdover error < 7us (after 24 hours, -20°C-70°C)
- Challenges:
 - Small profile double oven OCXO (OSA)
 - RF signal transport (IMT)
 - GPS L1C/A & L2C receiver design (IMT)
 - Ionospheric error corections (IMT)

Loss(RG213) = 17dB/60m or = 85dB/300m

Challenges:
- Small profile double oven OCXO (OSA)
- RF signal transport (IMT)
- GPS L1C/A & L2C receiver design (IMT)
- Ionospheric error corections (IMT)
GPS L1/L2 – CTI Project (2/2)

- Dual frequency front-end development
- GPS L1C/A L2C receiver development

[Cha05] “Dual-frequ. RF FE for Long Antenna-GPS Receiver Links,” ION GNSS 2005
Agenda

- Intro to GNSS
 - GNSS modulations, main receiver blocks, ...

- Selected past projects
 - GPS Watch, GRDB, GPS L1/L2 rx, ...

- Some current projects
 - GAMMA-A, Signature, SARBACAN, SNSF GNSS, SoftRx, ...

- From GNSS to UWB
Gamma-A: Galileo Receiver for Mass Market Applications in the Automotive Area

- GAMMA-A’s goals:
 - 3-frequency receiver concept for automotive applications
 - L1 GPS/EGNOS/ GALILEO
 - E5a/L5 GPS/GALILEO
 - E5b GALILEO signals
 - Innovation
 - 12 core technologies studied

- EPFL’s contribution:
 - Analyze possible tracking algorithms for processing
 - CBOC on Galileo E1 OS
 - TMBOC on GPS L1C OS

Signature’s goals:
- Prototype a GNSS based solution for flexible road user charging providing high integrity in a cost-effective and scalable manner.

EPFL’s contribution:
- Development of high-sensitivity assisted receiver prototype
Sarbacan: SAR BeAcon development with CANada

- Sarbacan’s goals
 - Development and validation of 3 types of 406MHz SAR beacons prototypes
 - Including SAR RLM processing and new MQPSK generation

- EPFL’s Contribution
 - GNSS receiver optimizations
 - Leading GNSS preliminary designs
 - Specific software GNSS rx solution

Aviation beacon
Maritime beacon
Personal beacon
Focus on algorithms for:

- High sensitivity
- Multipath mitigation

=> Taking profit of new GNSS signals’ structures and properties

E5 AltBOC(15,10) spectrum and correlation peak

Soft RX - Development of a GPS L1 software receiver

- 12 channel receiver with $F_s = 4$ MHz requires $3 \cdot 10^8$ additions and $4 \cdot 10^8$ multiplications per second
 => Solution: distributed arithmetic architecture

Single Instruction Multiple Data (SIMD)
+ data bit-depth independent
- platform dependent

Bitwise Processing (or vector processing)
+ high // and speed
- conversion into int

Agenda

- Intro to GNSS
 - GNSS modulations, main receiver blocks, ...
- Selected past projects
 - GPS Watch, GRDB, GPS L1/L2 rx, ...
- Some current projects
 - GAMMA-A, Signature, SARBACAN, SNSF GNSS, SoftRx, ...
- From GNSS to UWB
From GNSS rx developments to UWB developments

- UWB for high data rates short range communications
 - Shannon capacity theorem: $C \sim B \cdot \log_2[1+P / (B \cdot N_0)]$
 - E.g., for wireless USB, or for other high data rates cables replacement

- UWB for low data rates low power communications
 - E.g., for sensors networks, for Wireless Personal Area Networks (WPAN)

- UWB for locating devices (tags, nodes, etc)
 - E.g., for manufacturing, geo-fencing, etc.
PX PosLoc: UWB-based *Local Positioning System for Locating Tag Transmitters*

Measured precision:

67% (1 measure)

=> 0 ± 30.5 cm (phys)

=> 17.6 ± 20.7 cm (median)

67% (16 measures)

=> 0 ± 19.7 cm (phys)

=> 17.6 ± 5.5 cm (median)

[Mer08] “Experimental Platform for an Indoor Location and Tracking System,” *ENC-GNSS 08*
Dr. Cyril Botteron
GNSS & UWB Team Leader

EPFL–STI–IMT–ESPLAB
Rue A.-L. Breguet 2
CH-2000 Neuchâtel

Email: cyril.botteron@epfl.ch
Tel: +41 32 718 3424