

1

NAVIGARE 2010 - GNSS in ITS: the way of co-operation

NEARCTIS: Excellence in co-operative traffic management, role of technologies

Pierre-Yves Gilliéron ENAC - Laboratoire de Topométrie EPFL

(EPFL

Agenda

- The network of excellence NEARCTIS
 - Context & goal of the project
 - Research programme
 - Resources & associate partners
- Traffic management
 - Traffic control cycle
 - Basics micro-macro variables
- Role of technologies
- Requirements in positioning
- Positioning technologies
- Positioning quality
- Research prospects

NEARCTIS

- NEARCTIS: Excellence in co-operative traffic management
 - A 7th framework programme, Network of excellence, Theme 3, ICT
 - Integrating and strengthening the European Research Area

 Gathering academic research on traffic management (traffic modelling, traffic control, communication and positioning technologies)

(EPFL

NEARCTIS - Core Partners

- INRETS France, French National Institute for Transport and Safety Research, Scientific Coordinator
- ERT France, Europe Research Transport, Management coordinator
- TUDelft Netherlands, Technical University of Delft
- DLR Germany, Deutsches Zentrum für Luft und Raumfahrt
- University of Southampton, United Kingdom
- UCL United Kingdom, University College London
- Imperial College London, United Kingdom
- EPFL Switzerland, Ecole Polytechnique Fédérale de Lausanne, Labs: LAVOC – TRANSP-OR, TOPO
- Technical University of Crete, Greece

fcole polytichnique federale de LAUSANNE London

+UC

ERT

(INRETS)

NEARCTIS - Goals

- To create a virtual research institute
 - Integrated research programme
 - Common shared resources
 - Policy and structure for results and dissemination
 - Integration of training capabilities
- To ensure a strong link between the core network and associate partners
 - Academic, stakeholders of traffic, industry

(PH

Nearctis

NEARCTIS – Research Programme

- Elaborating a common and consistent research programme
 - Various scientific fields
 - Modelling, optimization and control, and evaluation
 - Communication, positioning and tracking
 - Deployment and implementation issues
 - Various systems implementation field
 - Motorway corridors
 - Dense urban network
 - Global Services: information based on co-operative systems

NEARCTIS – Resources

- Common resources
 - Developing a set of shared resources: databases, software, experimental tracks,...
- Education, Training and dissemination
 - Researchers' mobility and training
 - PhD grants
 - Workshops, summers schools
 - Web site: http://www.nearctis.org

Nearctis

(PA

- NEARCTIS
 - Summer school
 - EPFL, June 2010
 - 40 participants
 - 6 instructors

Real-Time Road Traffic Monitoring and Control				
Objective	s:			
The objec	tives of this s	ummer school are :		
🗀 3 to pro	ovide an oppo	ortunity for young resea	rchers and professional	s to acquire knowledge on
the basics	of road netw	ork state estimation, m	odelling and control and	j
🗀 to allow	v trainees to	get insight on possible i	mplications of these bas	sics in their own research and
application field				
Date	Time		Lecturer	Lecture Title
9th June	8:15-8:30	Welcome		
	8:30-9:15	Lecture 1		Framework
	9:15-9:30	Break		
	9:30-10:15	Lecture 2		Traffic state estimation (using kalman filtering)
	10:15-10:30	Break	Hans van Lint	
	10:30-11:15	Lecture 3		
	11:15-11:30	Break		
	11:30-12:15	Lecture 4		
	12:15-14:00	Lunch break		
	14:00-14:45	Lecture 5	Mila Mihaylova	Traffic state estimation (particle filter)
	14:45-15:00	Break		
	15:00-15:45	Lecture 6		
	15:45-16:00	Break		
	16:00-16:45	Lecture 7	Nick Hounsell	Urban traffic control and bus priority
	16:45-17:00	Break		
	17:00-17:45	Lecture 8		
10th June	8:30-9:15	Lecture 9	Michael Bell	Traffic and transit assignment
	9:15-9:30	Break		
	9:30-10:15	Lecture 10		
	10:15-10:30	Break		
	10:30-11:15	Lecture 11	Lawarence A. Klein	Data fusion
	11:15-11:30	Break		
	11:30-12:15	Lecture 12		
	12:15-14:30	Lunch break		
	14:30-15:15	Lecture 13	Markos Papageorgiou	Freeway traffic control
	15:15-15:30	Break		
	15:30-16:15	Lecture 14		
	16:15-16:30	Break		
	16:30-17:15	Lecture 15		
	17:15-17:30	Break		
	17:30-18:00	Answer to students questions		
11th June	9:00-16:00 Workshop "Towards new research area in co-operative traffic management"			

NEARCTIS – Associate Partners

- Close integration of partners:
 - International academic community
 - Scientific community

(EPFI

- Professional community: car manufacturers, traffic systems manufacturers, consultants
- Traffic management authorities and road operators
- Involvement of partners
 - Easy access to information disseminated by the project
 - Participation in networking activities
 - Specific access to resources shared by the network
 - Attend NEARCTIS workshops
- Interested? Please become AP of NEARCTIS

The traffic/transport/transit control cycle

Source: NEARCTIS-COST TU0702 Summer school "Real time road traffic monitoring and control", June 9-11, EPFL, Lausanne Acknowledgements: Prof. Hans-Van Lint (TuDelft)

Source: NEARCTIS-COST TU0702 Summer school "Real time road traffic monitoring and control", June 9-11, EPFL, Lausanne Acknowledgements: Prof. Hans-Van Lint (TuDelft)

Source: NEARCTIS-COST TU0702 Summer school "Real time road traffic monitoring and control", June 9-11, EPFL, Lausanne Acknowledgements: Prof. Hans-Van Lint (TuDelft)

13

Source: NEARCTIS-COST TU0702 Summer school "Real time road traffic monitoring and control", June 9-11, EPFL, Lausanne Acknowledgements: Prof. Hans-Van Lint (TuDelft)

Acknowledgements: Prof. Hans-Van Lint (TuDelft)

15

Traffic Management

Real Traffic Data

Traffic Management

- Techniques used for measuring the traffic variables
 - Fixed

(FI)

- Loop detectors, IR
- Optical sensors, camera
- Mobile
 - Floating car data
 - Floating phone data
 - Remote sensing, aerial

- The improvement of transport efficiency will be based on new traffic and travel information services
- Co-operative systems will play a key role in this context
- V2V Vehicle to vehicle; V2I: Vehicle to Infrastructure

Role of Technologies

- Communication and positioning systems are basic components of co-operative systems
- The ongoing development of GNSS and the new short range communication systems lead to new possibilities for traffic management
- Innovative traffic management systems require development of specific positioning and communication systems

What are the requirements in positioning?

Why do we need positioning systems?

(EPAL

Requirements in Positioning

- Grouping of ITS services according issues of safety or liability
 - Safety-of-life: applications considered as safety critical, or having any safety implication
 - Liability-critical: applications presenting any commercial or legal relationship between the service provider and the users
 - Non safety-of-life; non liability-critical: application not presenting any commercial, legal or safety implication

Specific requirements

- Accuracy: measure of the difference between the estimated position of a vehicle and its true position
 - Which road, which lane, where in the lane?
- Integrity: measure of the trust that can be placed in the correctness of the information supplied by the positioning system
- Continuity: capability of the system to perform without unscheduled interruptions during the intended operation
- Availability: percentage of the time that the positioning service is usable and is delivering the required accuracy, continuity and integrity

(Pfl

Requirements in Positioning

- Available: True error < Protection level < Alert Limit
- Not available: True error < Protection level > Alert Limit
- Integrity Risk: True error > Protection Level

- Fundamental parameters used in positioning
- From fixed locatioon to dynamic measurements

 Linking the measuring device (e.g. GPS) to the vehicle »
 - Set of « particles » distributed in the road network
 - Capability to provide instantaneous parameters

EPFU

Positioning Technologies

Parameter

Absolute position

- Tech.: GNSS, combination with other sensors
- Perf.: availability (e.g. tunnels, urban canyon)
- Role: tracking, locate the vehicle on the map

Relative position

- Tech.: beacons, radio-based systems
- Perf.: limited to specific location (e.g. gantry)
- Role: relevant in V2V & V2I architecture

Positioning Technologies

Parameter

- Time
 - Tech.: GNSS provide an accurate time scale
 - Perf.: availability (e.g. tunnels)
 - Role: key parameter for real time applications
- Speed
 - Tech.: speed sensors or GNSS based sensors
 - Perf.: continuity
 - Role: traffic state estimation, safety, enforcement

EPH

Positioning Technologies

Parameter

- Acceleration
 - Tech.: onboard inertial sensors
 - Perf.: continuity
 - Role: ADAS application, crash recorder
- Travelled distance
 - Tech.: wheel sensors, GNSS based systems
 - Perf.: availability
 - Role: management systems (e.g. fleet)

Positioning Quality - Example

• Field test: 18 km, travelled time: 40 min

(PFI

• Comparison: GPS "low cost" – High end GPS/INS Ref.: Project ENAC, Master students: Paola Cavadia, Amir Sohrab Sahaleh

27

Horizontal error: GPS "low cost" vs reference trajectory

Positioning Quality - Example

 Position accuracy: influenced by the environment, variable in time and space

29

(EPFL

EPH

Positioning Quality - Example

Stop of the vehicle

Position accuracy: bias, systematic error

Continuity of the positioning signal

(PA

Research prospects

NEARCTIS has identified some interesting researched areas on the integration of emerging technologies in traffic management

Research prospects

- Reliable positioning and tracking in dense traffic areas
- Secure vehicles positioning for traffic management
- Enhanced and multi-scale positioning, combination between global (GNSS) and local positioning (sensors)
- Accurate distance identification between vehicles for traffic safety
- Self-calibration and synchronisation of imagebased positioning and tracking systems

