





# Autonomous Mobile Robots Navigation in the Real World

Cédric Pradalier



Autonomous Systems Lab ETH Zurich







### Research @ www.asl.ethz.ch

- Mission
  - Create machines that know what they do





- Three Research Lines
  - The design of robotic and mechatronic systems
    - Space Rovers, Inspection-, Walking- and Micro-Robots
    - UAV Solar Airplane, Micro-Helicopters
  - Navigation and mapping
    - Mapping and Reasoning in real world settings
    - Navigation and Planning in dynamic environments
  - Product design methodologies and innovation
    - Innovation and Creativity
    - Digital Products







# Been there, done that

- Software Engineer
- Master+PhD in Imaging, Computer Vision and Robotics
- PhD: Intentional Navigation of a Mobile Robots.
- Post-Doc: CSIRO, Canberra/Brisbane, Australia: Field Robotics
  - Industrial Robots
  - Underwater Robots
- Now: ETH Zurich, Autonomous Systems Lab (Prof. R. Siegwart)
  - Deputy Director
  - Space robotics, Home robotics, ...







# Navigation?

"Navigation is the art and science of reaching a destination by moving along a predefined trajectory."

Robotic Navigation?

"Navigation is the act of reaching a given destination by moving along a controlled trajectory."







# Perception: a key component

- Sensors
  - GPS
  - INS
  - Laser scanner (2D or 3D)
  - Camera
  - Depth imager (ToF cameras, Kinect)
- Characteristics
  - Accuracy
  - Field of view
  - Latency
  - Noise model
  - Jitter
  - •





#### **Talk Outline**

- Overview of navigation application from various domains developed at the ASL, from ETH Zürich and CSIRO ICT Centre.
  - Boats,
  - Ground Vehicles,
  - Micro-Helicopters...
- Identification of the characteristics as navigation tasks, and the related challenges.



# Sailing Across the Atlantic

GPS-INS
Low dynamics
Low accuracy requirements







# **The Original Navigation Task**







# **AVALON** – The Autonomous Sailing Boat

www.ssa.ethz.ch

- Crossing the Atlantic
  - 4'200 nautical Miles
  - Fully autonomous
- Technical Details
  - Very innovative design of rig
  - Length: 4m
  - Width: 1.6m
  - Over all height: 8.5m
  - Draught: 2m
  - Weight: 530kg
  - Solar power and fuel-cells







#### **Characteristics**

- Localisation:
  - GPS: Easy, enough accuracy
- Mapping:
  - Not necessary
- Path Planning:
  - Easy, Static
- Task Scheduling:
  - Easy
- Obstacle Avoidance:
  - AIS: perception of other boats
  - Local planning but very low maneuverability
- Control:
  - Path following and upwind sailing





# Challenges

- Autonomy
  - Decision, Perception, Energy
  - Obtacle Avoidance
- Robustness
  - High wind, strong waves,
- Reliability
  - Mechanical, Electrical, Software
- Durability
  - Approx. 3 months of autonomous behavior





# **Navigation experiments**





# Robotic for Environment Monitoring

GPS-INS Low dynamics Low accuracy requirements







# **Navigation for Environment Monitoring**





# Limnobotic- Autonomous monitoring of lake water quality

- Regular measurement
  - Fully autonomous
  - 2-3km transects on a daily basis
  - Measurement up to 100m depth



- Technical Details
  - Custom made hull design
  - Length: 2.5m
  - Width: 1.6m
  - Weight: 120kg
  - Electric motors and marine grade batteries





#### **Characteristics**

- Localisation:
  - GPS: Easy, enough accuracy
- Mapping:
  - Spatio-temporal mapping of a biological phenomenon
- Path Planning:
  - Easy, Static
- Task Scheduling:
  - Navigation, sampling, winch control, ...
- Obstacle Avoidance:
  - Very challenging: perception and maneuverability
- Control:
  - Path following, velocity control, synchronisation with the winch





# Challenges

- Autonomy
  - Vision-Based Obtacle Avoidance
  - Adaptive Sampling
- Reliability
  - Mechanical, Electrical, Software
- Validation
  - Serious experimental protocol to be able to make conclusions out of the biological data





#### Results



×10<sup>5</sup>







# Industrial Vehicles: Load Transportation

Laser, vision, GPS-INS High accuracy requirements Weak energy constraints





# **Hot Metal Carrier Operations**





#### **Characteristics**

#### Localisation:

Laser scanners: high-accuracy, low noise, reliability

#### Mapping:

Offline, Static environment

#### Path Planning:

Predefined path segments, driven by hand and recorded

#### Task Scheduling:

 Complex: synchronisation of mast/hook operations with movement, detection of the load, interaction with infrastructure.

#### Obstacle Avoidance:

Laser based, collision prevention

#### Control:

 Trajectory tracking, load pick-up, speed control with gears



# Challenges

- Load handling
  - Vision-based load handling
  - Accurate alignment for pickup (+/- 5cm tolerance)
- Long-duration Reliability
  - Mechanical, Electrical, Software

- Safety while testing
  - 20 tonnes
  - 3 m/s



### **Laser Setup**

- ▶ 4 Sick Laser: 30m range, 4degrees tilt, 1.2m high
- Overlapping fields for redundancy
- Also used for obstacle avoidance





### **Navigation and Obstacle Management**

- Waypoint navigation
  - (x, y, vel) tuples

Segments are a sequence of waypoints

Obstacle management simply velocity controlled by object's proximity





# Localisation technique

- Range and angle measurement to reflecting structure (GPS not suitable here)
- Probabilistic Model of Perception
- Data Association with Nearest Neighbour
  - Not the best solution for this problem but sufficient here.







#### **Probabilistic Localisation**

Particle Filter: special instance of a Bayesian Filter:

$$Q_{t} = P(X_{t} | Z_{0} \cdots Z_{t} U_{0} \cdots U_{t}) = P(Z_{t} | X_{t}) \int_{X_{t-1}} P(X_{t} | X_{t-1} U_{t-1}) Q_{t-1}$$

- Simple Motion Model  $P(X_t | X_{t-1} U_{t-1})$ 
  - $X_t = (x_t, y_t, \theta_t)$ : Robot Position --  $U_t = (V_t, \Phi_t)$ : Command
  - Gaussian centered around kinematic model
- Simple Observation Model P(Z<sub>t</sub> | X<sub>t</sub>)
  - $Z_t = (r_t, \alpha_t)$ : range and bearing to each observed landmark
  - Gaussian model centered on geometrical values



#### Localisation

Accurate to within 10 cm on the HMC





## 5 hours experiment

www.ict.csiro.au

#### CSIRO ICT Centre



Hot Metal Carrier Project

Long Duration Run

5 hours of crucible handling

Autonoumous System Lab, QCAT - Brisbane



# 2 hours experiment





# **Long Duration Experiments**

| Experiment | Distance | Cycle Dist. | Velocity       | # Cruc. Ops          |
|------------|----------|-------------|----------------|----------------------|
|            |          |             |                | (drop off + pick up) |
| 5 hour     | 8.5 km   | 0.3 km      | -1.1 : 1.6 m/s | 58                   |
| 2 hour     | 6.5 km   | 0.93 km     | -1.4 : 3.0 m/s | 14                   |



# Industrial Vehicles: Pipe Inspection

Laser, vision
High accuracy requirements
Weak energy constraints









# **Robotic Pipe Inspection**



Robot

Mass: 3.3 Kg

Payload: 3.0 Kg

Max speed: 2.7mm/s

Size: 14.3 x 18.5 x 23.6 cm

Rotational Laser

Mass: 0.19 Kg

Scanning time: 50 s

Nb points per scan: 341K

Angular resolution: 0.36 deg





# Magnebike











#### **Characteristics**

- Localisation:
  - Rotating Laser scanners: 3D point clouds + ICP
- Mapping:
  - Online, might use CAD as input
- Path Planning:
  - Complex due to mechanical constraints of the magnetic adhesion
- Task Scheduling:
  - Segment navigation, environment scanning, edge passing
- Obstacle Avoidance:
  - Static only. Integrated in planning.
- Control:
  - Trajectory tracking, very low dynamic





#### Challenges

- Localisation
  - Very self-similar environments (cylinders).
  - Precise localisation of faults.
- Mapping
  - Surface extraction with the right amount of details for path planning
- Planning
  - Passing edges must be done with 90 degrees
  - Slightly less stability when driving perpendicular to gravity.





#### Results

### MagneBike

Compact Magnetic Wheeled Robot for Power Plant Inspection



Tâche, Fabien
Pomerleau, François
Fischer, Wolfgang
Caprari, Gilles
Mondada, Francesco
Moser, Roland
Siegwart, Roland



Autonomous System Lab (ASL) www.asl.ethz.ch



### Navigation for micro-helicopters

Vision, (GPS)-INS
High dynamics
Strong energy constraints







# s SFly

### sFly (EU FP7): Swarm of Micro Flying Robots SFly









#### **Characteristics**

- Localisation:
  - Single camera + IMU (+GPS): computationally intense and less smooth
- Mapping:
  - Online SLAM
- Path Planning:
  - Predefined path segments (for now)
- Task Scheduling:
  - Simple: take-off, fly segments, land...
- Obstacle Avoidance:
  - From Map/Path planning
- Control:
  - Complex flight dynamic, wind gust rejection





#### Challenges

- 3D environment
  - Harder to map
  - Harder to monitor
- Low computational resources (weight/energy)
  - Vision-based localisation
  - Vision-based mapping
- Complex control
  - Localisation system noise, delay, low update rate
  - Wind speed and gusts





#### Why a single camera?





- Low power consumption
- Provides reach information about the environment
- Wide field of view facilitates tracking (features are tracked over longer period)
- Inspired by insects: they benefit from large field of view for takeoff and landing
- Stereo-cameras do not help if the observed scene is too far (>20 times greater than the baseline)



- The camera has to move to perceive depth (up to a scale)
- With a single camera, metric depth information cannot be recovered







#### **Controller**

Hovering performance



RMS position error = 3 cm









#### Controller

 Hovering performance above different outdoor terrains under windy conditions









### **Outdoor operations**







#### **Outdoor operations**

 Vision based stabilization superior to GPS stabilization (up to certain height)







### **Mapping**









#### Mapping

- Generation of meshgrid from 3D map-points
- Texturing by projection of "best" keyframe to each triangle





#### Mapping

7.5010



NEW: 14.0

us Systems Lab .H Zurich iomonotuA T3

in a Large Outdoor Environment

Intuitive 3D Map

(remote controlled helicopter)

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



### Micro-helicopters for Inspection

Vision, (GPS)-INS
High accuracy requirements
High dynamics
Strong energy constraints







#### AIRobots - Navigation with Stereo







### Micro-helicopters for inspection



**First Prototype** 



**Second Prototype** 





#### **Characteristics**

- Localisation:
  - Stereo camera + IMU (+ onboard lights): computationally and energetically expensive
- Mapping:
  - Online SLAM
- Path Planning:
  - Predefined path segments (for now)
- Task Scheduling:
  - Simple: take-off, fly segments, land...
- Obstacle Avoidance:
  - Using the Stereo Cam (not addressed yet)
- Control:
  - Complex flight dynamic + controlled contact with the wall surfaces





#### Challenges

- 3D environment
  - Dark and very self-similar

Low computational resources (weight/energy)

- Complex control and obstacle interaction
  - Cluttered environment
  - Contact with the walls





#### Visual Egomotion – Keypoints, Descriptors

- Capture stereo shot
- Extract key points
  - FAST corner detector
  - Adaptive thresholding



- Compute key point descriptors
  - BRIEF feature descriptor





#### Visual Egomotion – Stereo Triangulation

- Associate features of left and right image
  - Epipolar constraint
  - Descriptor matching
- Triangulate associated features to obtain 3D points







#### Visual Egomotion – 3D Feature Matching

Capture next stereo shot

- Compute key points, descriptors and 3D points as before
- Associate features
  - Descriptor matching
  - IMU motion constraints







#### Visual Egomotion – Pose Estimation

RANSAC outlier rejection

P3P motion hypotheses

 Apply density filter before counting hypothesis inliers

Refinement via bundle adjustment







#### **Results – Boiler Experiments**

#### **Cameras**

- Stereo Rig
- Mockup
- Uncleaned boiler surface

IMU

LED Flash











#### Results - Accuracy, Runtime Performance

▶ Final error ~0.1% to Vicon ground truth



Runs at 10Hz – 15Hz on single core Intel Atom





### **Results: Indoor Odometry**



## Navigation in rough terrain

3D Vision, INS Strong perception constraints Focus on planning and control







### Navigation on 4 legs







#### **Characteristics**

- Localisation:
  - 6 DoF, Foot placement
- Mapping:
  - Online terrain traversability analysis
- Path Planning:
  - Complex foot placement planning
- Task Scheduling:
  - Complex gait scheduling, in particular in rough terrain
- Obstacle Avoidance:
  - Part of the traversability analysis
- Control:
  - Complex control of the stability, 12 joints controlled in position and speed





#### Challenges

- 3D environment mapping
  - Estimation of the surface qualities
  - Planning all foot placement to guarantee stability and account for uncertainties
  - Learning
- Energetic efficiency
  - Ongoing work on serial-elastic actuation





### Planning and walking on flat ground







#### **Ongoing works**



- Terrain perception
  - Kinect, ICP
- Online integration of 3D terrain model into the path planning
- Dynamic walking & running using serialelastic actuation



### **Conclusions**







#### Where do we stand?

- A lot of work for navigation is well structured or low-clutter environments
  - Boat navigation on lakes
  - Autonomous aerial vehicles
  - Indoor or industrial robots
- A lot of challenges in complex environment
  - On the road in urban settings
  - In the presence of dynamic objects
  - In unstructured environment





#### The Key Challenges

- Perception, Semantic
  - Perception in 3D
  - Understanding the world
  - Real-time Perception
- Processing power
  - Energy for sensing and processing
- Navigation in dynamic environment with highly dynamic systems
  - Urban traffic
  - Rally racing
  - Aerial acrobatics





#### Working together

- Leica Geosystems
  - Localisation and control of a micro-helicopter using a laser measurement system
- Crossing the atlantics



Unmanned Navigation





- Mapping Swiss lakes?
  - Autonomous navigation on lake is relatively easy
  - Scanning equipment is rare





### **Questions**





