Cooperative Navigation for Autonomous Underwater Vehicles

Navigare 2011, 4 May 2011, Bern

Distributed Intelligent Systems and Algorithms Laboratory
disal.epfl.ch

Alexander Bahr
Why go under water?

• Land, atmosphere and sea surface maps:
 • Many parameters obtainable through remote sensing
 • High-resolution
 • (Almost) complete coverage
 • Up to date
 • Cheap to obtain

• Subsurface maps:
 • **In situ** measurements required!
 • Low resolution
 • Sparse
 • Out-of-date (often by decades)
 • Expensive to obtain
Outline

• What is an AUV?
• Types of AUVs
• Payloads (sensing/scientific and navigation)
• Challenges in underwater robotics (Communication, Navigation)
• Cooperative Navigation
• Applications
What is an AUV? – and what not

• **Vehicle**
 • Mobile
 • Resource-constrained

• **Underwater**
 • Hostile environment
 • Pressure
 • Corrosion
 • Fouling
 • Potential loss of vehicle

• **Autonomous**
 • Not remote controlled
 • On board decision making
 • Limited intervention capabilities
Types of AUVs – active propulsion

<table>
<thead>
<tr>
<th></th>
<th>Low end AUV</th>
<th>Top end AUV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>0.7 m length * 0.1 m diameter</td>
<td>5 m length * 0.7 m diameter</td>
</tr>
<tr>
<td>Price</td>
<td>$15’000</td>
<td>$2’000’000</td>
</tr>
<tr>
<td>Top speed</td>
<td>1 m/s</td>
<td>3 m/s (15 m/s ?)</td>
</tr>
<tr>
<td>Max depth</td>
<td>100 m</td>
<td>11’000m</td>
</tr>
<tr>
<td>Endurance</td>
<td>2h</td>
<td>24h (72h)</td>
</tr>
</tbody>
</table>

Pictures courtesy of University of Hydroid, Ocean Server
Types of AUVs – active propulsion

- Cetus (Lockheed Martin, USA)
- Gavia (Hafmynd, Iceland)
- Flapping foil AUV (MIT)
- SAPPHIRES (Saab, Sweden)
- Hovering AUV (MIT/Bluefin)
- Solar AUV (AUVSI, USA)
- SeaBed (WHOI, USA)
- Nereus, hybrid AUV/ROV (WHOI)

http://auvac.org/resources/browse/configuration/
Types of AUVs – buoyancy driven

- Vehicle changes buoyancy from positive to negative and back
- Attached wings cause forward motion
 - Maximum depth (2000 m)
 - Forward speed (0.3 m/s)
 - Range: 5000 km (and more)
- Very long endurance vehicle (6 months – many years)
 - Very low power consumption
 - Limited sensing capabilities
 - Limited navigation sensors
 - Limited controllability
 - Bio fouling becomes relevant
- Price: $100’000

Pictures courtesy of University of Washington/APL, Webb Research
Types of AUVs – buoyancy driven

Pictures courtesy of University of Washington/APL, Webb Research
External sensing payloads

- Video Camera
- Sophisticated sonar (multi-beam, SAS)
- Active acoustics (sub-bottom profiler)
- Sampler
- Manipulator
- Large chemical sensors (CO₂)
- Computationally expensive sensors

- Camera (still)
- Simple sonar (side-scan, pencil beam)
- Magnetometer
- Small chemical sensors (O₂, chlorophyll)

- Passive acoustics

- Conductivity, Temperature, Depth
- Fluorescence
- Backscatter
External sensing payloads

- Side-scan sonar

- Photos

- Imaging sonar

- Multi-beam sonar:

Pictures courtesy of Dana Yoerger, Hanu Singh, Hafmynd, Bluefin, IMOS Australia
Navigation payloads

- Fiber-optic north seeking gyro
- Sophisticated INS

- Doppler Velocity Logger (DVL)
- Simple Inertial Navigation System (INS)
- Long / Ultra-short Base Line

- GPS
- Depth
- Simple accelerometer (orientation)
- 3 axis magnetic compass

Pictures courtesy of University of Hydroid, Ocean Server, Webb Research
Challenges - communication

• What does not work
 • Very High Frequency, Ultra High Frequency radio (MHz) (Wifi, Bluetooth, etc.)
 • Extremely High Frequency radio (GHz) (GSM, Satellite)
 • Infrared

• What “sort-of” works (short range)
 • Very Low Frequency radio (kHz)
 • Green/blue LEDs
 • Directed laser
 • Return current

• What works
 • Extremely Low Frequency (Hz)
 • **Acoustic**

Pictures courtesy of WHOI, MIT, Grumman, ANU, US Navy
Acoustic communication

- Acoustic modem (WHOI, Benthos, MIT, …)
- Range: $O(100 \text{ m}) - O(1-10 \text{ km})$
- Data rate: $O(\text{bytes/s}) - O(\text{kbytes/s})$
- Energy expensive $O(1 \text{ Joule/byte})$
- Small channel capacity (one modem at a time)
- Strong temporal and local variations of channel
- Interference with navigation equipment (LBL, DVL)
- Strong acoustic signature
- Multipath
 - Direct (1)
 - Surface bounce (2)
 - Thermocline Bounce (3)
 - Bottom bounce (4)

32 bytes every 10s!
Underwater navigation

• Absolute positioning
 • GPS (only when surfacing)
 • LBL:
 1. AUV send query ping to all beacons
 2. Beacon 1 responds
 3. Beacon 2 responds
 4. Vehicle computes position
 • Beacon field needs to be predeployed
 • Operating area is limited by to a few km²

• Vision-aided navigation

Picture courtesy of Ryan Eustice
Underwater navigation

• Relative positioning:
 • Depth sensor → underwater navigation is a 2D problem
 • Magnetic compass ($1k; accuracy: 1-3 degrees)
 • Fiber Optical Gyro (FOG) ($40k; accuracy: 0.1 degree)
 • Inertial Navigation System
 • Doppler Velocity Logger (DVL)
 – Provides 2D speed over ground
 – Maximum distance to seafloor: 30 m – 200 m

Best case AUV navigation accuracies
 • Surface: GPS
 • Near seafloor: 0.1% distance traveled
 • Mid-water column: 1.5 km/h drift

Pictures courtesy of RDI, IXSEA
Cooperative navigation

Different vehicles have different navigation sensors with different accuracies

- **Glider**
 - (compass + speed estimate)

- **AUV**
 - (DVL/compass based navigation)

- **AUV deluxe**
 - (INS with fiber-optic gyro)

- **Surface vehicle**
 - (GPS)

Pictures courtesy of University of Washington/APL, Hydroid, Kongsberg
Cooperative navigation

In heterogeneous teams:

“Use other vehicles’ position estimate to update my own”

- Each vehicle is outfitted with an acoustic modem
- Vehicle broadcast
 - Position estimate \(x(x,y, \text{depth}, \text{course}, \text{speed}) \)
 - Certainty estimate \(P \)
 - (additional information)
- Inter-vehicle measurement (range \(r \) is available)
Cooperative navigation

• Ad-hoc:
 – Heterogeneous group of vehicles
 – Broadcast when position uncertainty low

• Hierarchical:
 – Task specific AUVs
 – Dedicated communication and navigation aids (CNA) (expensive navigation sensors, frequent surfacings, few vehicles) → master
 – Mission specific AUVs (cheap navigation sensors, no surfacing, many vehicles) → slave

Illustration courtesy of Bluefin Robotics
Cooperative Navigation experiment

- Panama City, FL, December 2006
- Mine Counter Measure (MCM)
- 2 Autonomous Surface Crafts
- 1 AUV:
 - Bluefin 12”
 - Navigation: depth gauge, DVL, INS, compass
 - Acoustic modem
- ASCs followed AUV
- ASCs broadcast GPS position, AUV got range to ASC
Cooperative Navigation experiment

- GPS
- Dead-reckoned
- "Ground-Truth"
- CN algorithm

30 m!
Applications

- **Static missions**
 - Pre-programmed
 - List of waypoints
 - Non-adaptive

- **Adaptive missions**
 - Partially pre-programmed
 - List of behaviors
 - Vehicle adapts depending on sensor reading

- **Multi-vehicle missions**
 - Pre-programmed or adaptive

Pictures courtesy of Ocean Server
Conclusions

• AUVs face difficulties not encountered in other environments
• Expensive hardware, but cheaper alternatives are underway
• Experiments require careful planning and execution

• Most difficult terrain to navigate in
• Drift will always get you
• Absolute position update requires extensive infrastructure OR
• Cooperative navigation
Thank you!