Cooperative Navigation for Autonomous Underwater Vehicles

Navigare 2011, 4 May 2011, Bern

Distributed Intelligent Systems and Algorithms Laboratory

disal.epfl.ch

Alexander Bahr

Why go under water ?

- Land, atmosphere and sea surface maps:
 - Many parameters obtainable through remote sensing
 - High-resolution
 - (Almost) complete coverage
 - Up to date
 - Cheap to obtain
- Subsurface maps:
 - In situ measurements required !
 - Low resolution
 - Sparse
 - Out-of-date (often by decades)
 - Expensive to obtain

46°31' N 6°34' E (60 m * 150 m)

38°12' N 155° 03' W (700 km * 1500 km)

- What is an AUV?
- Types of AUVs
- Payloads (sensing/scientific and navigation)
- Challenges in underwater robotics (Communication, Navigation)
- Cooperative Navigation
- Applications

What is an AUV? – and what not

- Vehicle
 - Mobile
 - Resource-constrained
- Underwater
 - Hostile environment
 - Pressure
 - Corrosion
 - Fouling
 - Potential loss of vehicle
- Autonomous
 - Not remote controlled
 - On board decision making
 - Limited intervention capabilities

Types of AUVs – active propulsion

REMUS 6000

Pictures courtesy of University of Hydroid, Ocean Server

	Low end AUV	Top end AUV
Dimensions	0.7 m length * 0.1 m diameter	5 m length * 0.7 m diameter
Price	\$15'000	\$2'000'000
Top speed	1 m/s	3 m/s (15 m/s ?)
Max depth	100 m	11'000m
Endurance	2h	24h (72h)

Types of AUVs – active propulsion

Cetus (Lockheed Martin, USA)

Gavia (Hafmynd, Iceland)

Solar AUV (AUVSI, USA)

Flapping foil AUV (MIT)

SAPPHIRES (Saab, Sweden)

SeaBed (WHOI, USA)

Hovering AUV (MIT/Bluefin)

Nereus, hybrid AUV/ROV (WHOI)

http://auvac.org/resources/browse/configuration/

Types of AUVs – buoyancy driven

- Vehicle changes buoyancy from positive to negative and back
- Attached wings cause forward motion
 - Maximum depth (2000 m)
 - Forward speed (0.3 m/s)
 - Range: 5000 km (and more)
- Very long endurance vehicle (6 months many years)
 - Very low power consumption
 - Limited sensing capabilities
 - Limited navigation sensors
 - Limited controllability
 - Bio fouling becomes relevant
- Price: \$100'000

Pictures courtesy of University of Washington/APL, Webb Research

Types of AUVs – buoyancy driven

Pictures courtesy of University of Washington/APL, Webb Research

External sensing payloads

- Video Camera
- Sophisticated sonar (multi-beam, SAS)
- Active acoustics (sub-bottom profiler)
- Sampler
- Manipulator
- Large chemical sensors (CO₂)
- Computationally expensive sensors
- Camera (still)
- Simple sonar (side-scan, pencil beam)
- Magnetometer
- Small chemical sensors (O₂, chlorophyll)
- Passive acoustics
- Conductivity, Temperature, Depth
- Fluorescence
- Backscatter

Size and power requireme

External sensing payloads

• Side-scan sonar

• Photos

Pictures courtesy of Dana Yoerger, Hanu Singh, Hafmynd, Bluefin, IMOS Australia

• Imaging sonar

• Multi-beam sonar:

Navigation payloads

Disal

Fiber-optic north seeking gyroSophisticated INS

- Doppler Velocity Logger (DVL)
- Simple Inertial Navigation System (INS)
- Long / Ultra-short Base Line

Size and power requiremen

- GPS
- Depth
- Simple accelerometer (orientation)
- 3 axis magnetic compass

Pictures courtesy of University of Hydroid, Ocean Server, Webb Research

Challenges - communication

- What does not work
 - Very High Frequency, Ultra High Frequency radio (MHz) (Wifi, Bluetooth, etc.)
 - Extremly High Frequency radio (GHz) (GSM, Satellite)
 - Infrared
- What "sort-of" works (short range)
 - Very Low Frequency radio (kHz)
 - Green/blue LEDs
 - Directed laser
 - Return current
- What works
 - Extremly Low Frequency (Hz)
 - Acoustic

Pictures courtesy of WHOI, MIT, Grumman, ANU, US Navy

Acoustic communication

- Acoustic modem (WHOI, Benthos, MIT, ...)
- Range: O(100 m) O(1-10 km)
- Data rate: O(bytes/s) O(kbytes/s)
- Energy expensive *O*(1 Joule/byte)
- Small channel capacity (one modem at a time)
- Strong temporal and local variations of channel
- Interference with navigation equipment (LBL, DVL)
- Strong acoustic signature
- Multipath
 - Direct (1)
 - Surface bounce (2)
 - Thermocline Bounce (3)
 - Bottom bounce (4)

32 bytes every 10s !

Underwater navigation

- Absolute positioning
 - GPS (only when surfacing)
 - LBL:
 - 1. AUV send query ping to all beacons
 - 2. Beacon 1 responds
 - 3. Beacon 2 responds
 - 4. Vehicle computes position
 - Beacon field needs to be predeployed
 - Operating area is limited by to a few km²
 - Vision-aided navigation

Picture courtesy of Ryan Eustice

Underwater navigation

- Relative positioning:
 - Depth sensor \rightarrow underwater navigation is a 2D problem
 - Magnetic compass (\$1k; accuracy: 1-3 degrees)
 - Fiber Optical Gyro (FOG) (\$40k; accuracy: 0.1 degree)
 - Inertial Navigation System
 - Doppler Velocity Logger (DVL)
 - Provides 2D speed over ground
 - Maximum distance to seafloor: 30 m 200 m
 - Best case AUV navigation accuracies
 - Surface: GPS
 - Near seafloor: 0.1% distance traveled
 - Mid-water column: 1.5 km/h drift

Pictures courtesy of RDI, IXSEA

Cooperative navigation

Different vehicles have different navigation sensors with different accuracies

Navigation error [%/distance travelled 10% 1% 0.1% 0%

Glider (compass + speed estimate)

AUV (DVL/compass based navigation)

AUV deluxe (INS with fiber- optic gyro)

Surface vehicle (GPS)

Pictures courtesy of University of Washington/APL, Hydroid, Kongsberg

Cooperative navigation

In heterogeneous teams:

"Use other vehicles' position estimate to update my own"

- Each vehicle is outfitted with an acoustic modem
- Vehicle broadcast
 - Position estimate x(x,y, depth, course, speed)
 - Certainty estimate P
 - (additional information)
- Inter-vehicle measurement (ranger is available)

Cooperative navigation

Dis

- Ad-hoc:
 - Heterogeneous group of vehicles
 - Broadcast when position uncertainty low
- Hierarchical:
 - Task specific AUVs
 - Dedicated communication and navigation aids (CNA) (expensive navigation sensors, frequent surfacings, few vehicles) → master
 - Mission specific AUVs
 (cheap navigation sensors, no surfacing, many vehicles) → slave

slave

Illustration courtesy of Bluefin Robotics

Cooperative Navigation experiment

- Panama City, FL, December 2006
- Mine Counter Measure (MCM)
- 2 Autonomous Surface Crafts
- 1 AUV:
 - Bluefin 12"
 - Navigation: depth gauge, DVL, INS, compass
 - Acoustic modem
- ASCs followed AUV
- ASCs broadcast GPS position, AUV got range to ASC

ECOLE POLYTECHNIQUE COOPERative Navigation experiment

Applications

- Static missions
 - Pre-programmed
 - List of waypoints
 - Non-adaptive
- Adaptive missions
 - Partially pre-programmed
 - List of behaviors
 - Vehicle adapts depending on sensor reading
- Multi-vehicle missions
 - Pre-programmed or adaptive

Pictures courtesy of Ocean Server

Conclusions

- AUVs face difficulties not encountered in other environments
- Expensive hardware, but cheaper alternatives are underway
- Experiments require careful planning and execution
- Most difficult terrain to navigate in
- Drift will always get you
- Absolute position update requires extensive infrastructure **OR**
- Cooperative navigation

Thank you !