

Smart communication for Electric Vehicles

Navigare 2012 - Berner Fachhochschule March 23^d 2012

Dimitri Finker: CTO, freshmile **Fréderic Lassabe**: enseignant-chercheur, UTBM

Presentation outline

Project Alsace Auto 2.0 overview

- Battery monitoring and control
- Benefits for the stakeholders

VIA

"Alsace Auto 2.0" in a nutshell

- Demonstration project over 2011-2014
- 50 EVs rolled out in Strasbourg and Alsace
- 50 home charging points and 50 workplace charging points
- Freshmile as aggregator of the 50 EVs and batteries: distributed virtual power plant

www.freshmile.com

av/1/A

Goals

- To create a service company offering EVs on a monthly subscription fee, installing for each vehicle a connection point at home and at work
- To provide users with an innovative mobility service at reduced cost, by monetising batteries' storage capacities
- To provide grid operators with distributed storage capacities for grid ancillary services, peak shaving and valley filling

Cross-disciplinary developments

Discipline	Responsible
 Project management Optimization algorithms and software developments Mobility operator 	Novae Alsace
 Design and manufacturing of smart charging points 	Hager
 Fast prototyping Field system (BEV + EVSE) modeling 	UTBM
Operating platform developments	BPL
Electric vehicle prototyping	FAM

Key processes:

- Collect of systems status and constraints
- Arbitrage and optimization
- Feed-back and control

www.freshmile.com

Presentation outline

Project Alsace Auto 2.0 overview

Battery monitoring and control

Benefits for the stakeholders

VIA

Usual electric vehicle operation

Battery Electric Vehicle (BEV)

- Batteries charging while driving
- Batteries discharging while plugged to a supply equipment (EVSE)
- EVSE provides metering
- Low level communications between BEV and EVSE
- No external control

High level communication

- Based on standard IEC 15118
 - BEV component: EVCC (Electric Vehicle Communication Controller)
 - EVSE component: SECC (Supply Equipment Communication Controller)
- Imposes constraints on communications with secondary actors (the aggregator Freshmile)
- Defines various use cases
 - Charge control from aggregator
 - Constraints from power grid

Architecture overview

freshmile SET

www.freshmile.com

1-11/1-

Alsace Auto 2.0 implementation

- Aggregator
 - Tomcat server with java servlets, most communications are HTTP
- SECC/EVCC
 - Posix C language (portable on many embedded devices)
 - Communications with aggregator are HTTP except for commands sent from aggregator
 - Communications SECC \leftrightarrow EVCC at TCP level.
- Messages in XML
- User control: smartphone application to provide needs.
 - Aggregator optimizes based on needs, vehicles status and grid requirements

www.freshmile.com

BEV Status

- No polling from aggregator (high bandwidth and system resources costs!)
- Regular status updates (every 30 seconds)
- Alerts
 - BMS status change: SoC, temperature, charging status, charging current,...
 - Forwarded as soon as detected
 - Aggregator always has the up-to-date status \rightarrow always make decisions on the real overall system status

MANA

- Same principle from EVSE
 - Plug status
 - Charging current

www.freshmile.com

Presentation outline

- Project Alsace Auto 2.0 overview
- Battery monitoring and control
- Benefits for the stakeholders

MA

State and non-state authorities

Overall Objectives

- Making EV easy
- Optimising grid management
- Allowing increased use of renewable energy sources

Environmental benefits

Pairing with renewable energy production

Taking care of batteries' second life and recycling

Removing old cars from the road

Economic benefits

Avoiding grid costs (peak units, thermal power plant fuel usage)

Decreasing road fuel consumption

Making EV cheaper

Societal benefits

 Improving grid quality
 Mitigating black-out risks and consequences

Encouraging virtuous behaviours from users

Car and battery manufacturer

Overall Objectives

Making EV easy

- Optimising grid management
- Allowing increased use of renewable energy sources

freshmile

Environmental benefits

Pairing with renewable energy production

 Taking care of batteries' second life and recycling
 Removing old cars from the road

Economic benefits

electric mobility

Avoiding grid costs (peak units, thermal power plant fuel usage)

Decreasing road fuel consumption

Making EV cheaper

Societal benefits

 Improving grid quality
 Mitigating black-out risks and consequences

Encouraging virtuous behaviours from users

16

End users

Overall Objectives

Making EV easy

- Optimising grid management
- Allowing increased use of renewable energy sources

freshmile

- Pairing with renewable energy production
- Taking care of batteries' second life and recycling
- Removing old cars from the road

Economic benefits

electric mobility

Avoiding grid costs (peak units, thermal power plant fuel usage)

Decreasing road fuel consumption

Making EV cheaper

Societal benefits

Improving grid quality

Mitigating black-out risks and consequences

Encouraging virtuous behaviours from users

www.freshmile.com

freshmile

SET

Electrical industry

Overall Objectives

- Making EV easy
- Optimising grid management
- Allowing increased use of renewable energy sources

Environmental benefits

Pairing with renewable energy production

- Taking care of batteries' second life and recycling
- Removing old cars from the road

www.freshmile.com

Economic benefits

Avoiding grid costs (peak units, thermal power plant fuel usage)

- Decreasing road fuel consumption
- Making EV cheaper

Societal benefits

 Improving grid quality
 Mitigating black-out risks and consequences

Encouraging virtuous behaviours from users

freshmile

SET